Covid-19 Research

Research Article

OCLC Number/Unique Identifier: 9528700181

Muscle Power Signal Acquisition Monitoring Using Surface EMG

Biology Group    Start Submission

Rifky Ismail*

Volume3-Issue5
Dates: Received: 2022-05-24 | Accepted: 2022-05-30 | Published: 2022-05-31
Pages: 664-668

Abstract

Recent demand and interest in patient health monitoring has driven significant interest toward developing varies alternative rehabilitation monitoring instrument. Muscle power can be seen from how many power it’s generate from contraction effort that can be sense by its voltage potential in microvolt order. Surface Electromyogram (EMG) is used to take the record acquisition of muscle power data as patient take the rehabilitation program for some period. In this paper the surface EMG designed to get some level amplification to maintain the data readable and filter to minimize noise that always is the problem from instrument to get data. The aim of the research is to design compact surface EMG device that can be record data development of muscle power over time.

FullText HTML FullText PDF DOI: 10.37871/jbres1493


Certificate of Publication




Copyright

© 2022 Ismail R. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Ismail R. Muscle Power Signal Acquisition Monitoring Using Surface EMG. J Biomed Res Environ Sci. 2022 May 31; 3(5): 664-668. doi: 10.37871/jbres1493, Article ID: JBRES1493, Available at: https://www.jelsciences.com/articles/jbres1493.pdf


Subject area(s)

References


  1. Jiménez FR, Verlinden O. Review of control algorithms for robotic ankle systems in lower-limb orthoses, prostheses, and exoskeletons. Med Eng Phys. 2012;37:505–511. https://tinyurl.com/26dzmpbr
  2. Ferris DP, Gordon KE, Sawicki GS, Peethambaran A. An improved powered ankle-foot orthosis using proportional myoelectric control. Gait Posture. 2006 Jun;23(4):425-428. doi: 10.1016/j.gaitpost.2005.05.004. Epub 2005 Aug 10. PMID: 16098749.
  3. Konrad P. The ABC of EMG, A Practical Introduction to Kinesiological Electromyography. Noraxon Inc Scottsdale, AZ, USA. 2005. https://tinyurl.com/6czyz5zu
  4. Wan Daud, Yahya, Horng, Sulaima, Sudirman R. Features extraction of electromyography signals in time domain on biceps brachii muscle. International Journal of Modeling and Optimization. Bucharest, Romania. 2013;3(6):515-519. https://tinyurl.com/yc6zrjku
  5. Raez MB, Hussain MS, Mohd-Yasin F. Techniques of EMG signal analysis: Detection, processing, classification and applications. Biol Proced Online. 2006;8:11-35. doi: 10.1251/bpo115. Epub 2006 Mar 23. Erratum in: Biol Proced Online. 2006;8:163. PMID: 16799694; PMCID: PMC1455479.
  6. Chowdhury RH, Reaz MB, Ali MA, Bakar AA, Chellappan K, Chang TG. Surface electromyography signal processing and classification techniques. Sensors (Basel). 2013 Sep 17;13(9):12431-12466. doi: 10.3390/s130912431. PMID: 24048337; PMCID: PMC3821366.
  7. Bin Ahmad Nadzri AA, Ahmad SA, Marhaban MH, Jaafar H. Characterization of surface electromyography using time domain features for determining hand motion and stages of contraction. Australas Phys Eng Sci Med. 2014 Mar;37(1):133-137. doi: 10.1007/s13246-014-0243-3. Epub 2014 Jan 18. PMID: 24443218.
  8. Di Nardo F, Mengarelli A, Maranesi E, Burattini L, Fioretti S. Assessment of the ankle muscle co-contraction during normal gait: a surface electromyography study. J Electromyogr Kinesiol. 2015 Apr;25(2):347-354. doi: 10.1016/j.jelekin.2014.10.016. Epub 2014 Nov 7. PMID: 25465985.
  9. Ahmad SA, Chappell PH. Surface EMG pattern analysis of the wrist muscles at different speeds of contraction. J Med Eng Technol. 2009;33(5):376-385. doi: 10.1080/03091900802491246. PMID: 19440916. яндекс
  10. Jamal MZ. Computational intelligence in electromyography analysis – A perspective on current applications and future challenges. Intech. 2012;18. https://tinyurl.com/yj9td4nn
  11. Scott Day. Important factors in surface EMG measurement. Bortec Biomedical Incorporated. https://tinyurl.com/4cfjckx2


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search