Abdullatif Azab*
Volume4-Issue4
Dates: Received: 2023-04-17 | Accepted: 2023-04-25 | Published: 2023-04-27
Pages: 806-832
Abstract
The plant genus Morus (Mulberry) has been used by humans for many centuries. All parts of the trees are used, but the fruits have the highest nutritional values. Most of the species of this genus were studied for various medicinal and biological activities, as well as many other properties, including chemical composition. Two species, Morus alba and Morus nigra were very extensively investigated, and research reports about them continue to be published very frequently. The chemistry of this plant genus is fascinating. It includes numerous natural products with unique structures and structure-sub-units, making them excellent candidates as organic synthesis starting materials. Many review articles were published about the Morus genus and some of its species, but this article is the most comprehensive regarding antidiabetic activity and insulin regulation. Active natural products are responsible for these activities will be presented, as well as possible and proposed mechanisms of action. Ethnobotanical and ethnomedicinal information related to the antidiabetic activity will be briefly presented. In addition, a thorough discussion section will lead to conclusions, some future directions, and recommendations for research.
FullText HTML
FullText PDF
DOI: 10.37871/jbres1739
Certificate of Publication

Copyright
© 2023 Azab A. Distributed under Creative Commons CC-BY 4.0
How to cite this article
Azab A. Morus Plant Genus: Superb Antidiabetic Activity and Outstanding Source of Nutrients. J Biomed Res Environ Sci. 2023 Apr 27; 4(4): 806-832. doi: 10.37871/jbres1739, Article ID: JBRES1739, Available at: https://www.jelsciences.com/ articles/jbres1739.pdf
Subject area(s)
References
- Gelorini V, Bourgeois J. First discovery of black mulberry (Morus nigra L.) pollen in a late bronze age well at sint-gillis-waas (Flanders, Belgium): Contamination or in situ deposition? Environ Archaeol. 2005;10:89-93. doi: 10.1179/env.2005.10.1.91.
- Awasthi AK, Nagaraja GM, Naik GV, Kanginakudru S, Thangavelu K, Nagaraju J. Genetic diversity and relationships in mulberry (genus Morus) as revealed by RAPD and ISSR marker assays. BMC Genet. 2004 Jan 10;5:1. doi: 10.1186/1471-2156-5-1. PMID: 14715088; PMCID: PMC343270.
- Tsoucalas G, Sgantzos M. Hippocrates, on the infection of the lower respiratory tract among the general population in ancient Greece. Gen Med. 2016;4:5. doi: 10.4172/2327-5146.1000272.
- Zeng Q, Chen H, Zhang C, Han M, Li T, Qi X, Xiang Z, He N. Definition of Eight Mulberry Species in the Genus Morus by Internal Transcribed Spacer-Based Phylogeny. PLoS One. 2015 Aug 12;10(8):e0135411. doi: 10.1371/journal.pone.0135411. PMID: 26266951; PMCID: PMC4534381.
- Rahman AH, Khanom AA. Taxonomic and ethno-medicinal study of species from moraceae (Mulberry) family in Bangladesh flora. Res Plant Sci. 2013;1:53-57. doi: 10.12691/plant-1-3-1.
- Guo JJ, Han J, Wang SL, Liu JY. An ethnobotanical survey of medicinal plants used for the ailment of diabetes mellitus in Changzhi city of Shanxi province, China. Biomed Res. 2017;28:1370-1377.
- Rahul J. An ethnobotanical study of medicinal plants in Taindol village, district Jhansi, region of Bundelkhand, Uttar Pradesh, India. J Med Plants Stud. 2013;1:59-71.
- Kaur R. Ethnobotanical studies of some of the traditionally important medicinal plants of Punjab (India). Int J Curr Res Acad Rev. 2015;3:262-271.
- Jalali H, Nejad AM, Ebadi AG, Laey G. Ethnobotany and folk pharmaceutical properties of major trees or shrubs in northeast of Iran. Asian J Chem. 2009;21:5632-5638.
- Baharvand-Ahmadi B, Bahmani M, Eftekhari Z, Jelodari M, Mirhoseini M. Overview of medicinal plants used for cardiovascular system disorders and diseases in ethnobotany of different areas in Iran. J HerbMed Pharmacol. 2016;5:39-44.
- Mohammadi H, Sajjadi SE, Noroozi M, Mirhosseini M. Collection and assessment of traditional medicinal plants used by the indigenous people of Dastena in Iran. J HerbMed Pharmacol. 2016;5:54-60.
- Akdime H, Boukhira S, Mansouri LE, Elyoubi AH, Bousta D. Ethnobotanical study and traditional knowledge of medicinal plants in Ain Leuh Region (Middle-Atlas of Morocco). Am J Adv Drug Deliv. 2015;3:248-263.
- Umair M, Altaf M, Abbasi AM. An ethnobotanical survey of indigenous medicinal plants in Hafizabad district, Punjab-Pakistan. PLoS One. 2017 Jun 2;12(6):e0177912. doi: 10.1371/journal.pone.0177912. PMID: 28574986; PMCID: PMC5456064.
- Umair M, Altaf M, Bussmann RW, Abbasi AM. Ethnomedicinal uses of the local flora in Chenab riverine area, Punjab province Pakistan. J Ethnobiol Ethnomed. 2019 Feb 1;15(1):7. doi: 10.1186/s13002-019-0285-4. PMID: 30709360; PMCID: PMC6359778.
- Habib A, Shujaul MK, Sajidul G, Niaz A. Ethnobotanical study of upper siran. Journal of Herbs Spices & Medicinal Plants. 2009;15:86-97. doi: 10.1080/10496470902787519.
- Bussmann RW, Paniagua-Zambrana N, Chamorro MR, Moreira NM, del Rosario Cuadros Negri ML, Olivera J. Peril in the market-classification and dosage of species used as anti-diabetics in Lima, Peru. J Ethnobiol Ethnomed. 2013 May 30;9:37. doi: 10.1186/1746-4269-9-37. PMID: 23718140; PMCID: PMC3738155.
- Lans CA. Ethnomedicines used in Trinidad and Tobago for urinary problems and diabetes mellitus. J Ethnobiol Ethnomed. 2006 Oct 13;2:45. doi: 10.1186/1746-4269-2-45. PMID: 17040567; PMCID: PMC1624823.
- Tuzlaci E, Şenkardeş I. Turkish folk medicinal plants, X: Ürgüp (Nevşehir). Marmara Pharm J. 2011;5:58-68. doi: 10.12991/201115432.
- Boscolo OH, Fernandes LR, de Senna Valle L. An ethnobotanical survey as subsidy for the generation of researches related to biotechnology. Int Res J Biotechnol. 2010;1:001-006.
- Maleki T, Akhani H. Ethnobotanical and ethnomedicinal studies in Baluchi tribes: A case study in Mt. Taftan, southeastern Iran. J Ethnopharmacol. 2018 May 10;217:163-177. doi: 10.1016/j.jep.2018.02.017. Epub 2018 Feb 12. PMID: 29447950.
- Guarino C, De Simone L, Santoro S. Ethnobotanical study of the Sannio area, Campania, Southern Italy. Ethnobot Res Appl. 2008;6:255-317. doi: 10.17348/era.6.0.255-317.
- Mustafa B, Hajdari A, Pajazita Q, Syla B, Quave CL, Pieroni A. An ethnobotanical survey of the Gollak region, Kosovo. Genet Resour Crop Evol. 2012;59:739-754. doi: 10.1007/s10722-011-9715-4.
- Mustafa B, Hajdari A, Krasniqi F, Hoxha E, Ademi H, Quave CL, Pieroni A. Medical ethnobotany of the Albanian Alps in Kosovo. J Ethnobiol Ethnomed. 2012 Jan 28;8:6. doi: 10.1186/1746-4269-8-6. PMID: 22284581; PMCID: PMC3285519.
- Qasim M, Khalid M, Sayyed A, Din I, Hayat K, Jan R, Jan SA. Phytochemical potentials and medicinal uses of twenty-four selected medicinal plants from Swabi, Pakistan. J Rural Dev Agric. 2016;1:49-58.
- Hsu JH, Yang CS, Chen JJ. Antioxidant, Anti-α-Glucosidase, Antityrosinase, and Anti-Inflammatory Activities of Bioactive Components from Morus alba. Antioxidants (Basel). 2022 Nov 11;11(11):2222. doi: 10.3390/antiox11112222. PMID: 36421408; PMCID: PMC9686747.
- Shi Y, Zhong L, Fan Y, Zhang J, Zhong H, Liu X, Shao C, Hu Y. The Protective Effect of Mulberry Leaf Flavonoids on High-Carbohydrate-Induced Liver Oxidative Stress, Inflammatory Response and Intestinal Microbiota Disturbance in Monopterus albus. Antioxidants (Basel). 2022 May 16;11(5):976. doi: 10.3390/antiox11050976. PMID: 35624840; PMCID: PMC9137898.
- Metwally FM, Rashad H, Mahmoud AA. Morus alba L. Diminishes visceral adiposity, insulin resistance, behavioral alterations via regulation of gene expression of leptin, resistin and adiponectin in rats fed a high-cholesterol diet. Physiol Behav. 2019 Mar 15;201:1-11. doi: 10.1016/j.physbeh.2018.12.010. Epub 2018 Dec 12. PMID: 30552920.
- Tomczyk M, Miłek M, Sidor E, Kapusta I, Litwińczuk W, Puchalski C, Dżugan M. The Effect of Adding the Leaves and Fruits of Morus alba to Rape Honey on Its Antioxidant Properties, Polyphenolic Profile, and Amylase Activity. Molecules. 2019 Dec 24;25(1):84. doi: 10.3390/molecules25010084. PMID: 31878340; PMCID: PMC6982941.
- Musabayane CT, Bwititi PT, Ojewole JA. Effects of oral administration of some herbal extracts on food consumption and blood glucose levels in normal and streptozotocin-treated diabetic rats. Methods Find Exp Clin Pharmacol. 2006 May;28(4):223-8. doi: 10.1358/mf.2006.28.4.990202. PMID: 16801983.
- Oku T, Yamada M, Nakamura M, Sadamori N, Nakamura S. Inhibitory effects of extractives from leaves of Morus alba on human and rat small intestinal disaccharidase activity. Br J Nutr. 2006 May;95(5):933-8. doi: 10.1079/bjn20061746. PMID: 16611383.
- Mudra M, Ercan-Fang N, Zhong L, Furne J, Levitt M. Influence of mulberry leaf extract on the blood glucose and breath hydrogen response to ingestion of 75 g sucrose by type 2 diabetic and control subjects. Diabetes Care. 2007 May;30(5):1272-4. doi: 10.2337/dc06-2120. Epub 2007 Feb 15. PMID: 17303787.
- Nakamura M, Nakamura S, Oku T. Suppressive response of confections containing the extractive from leaves of Morus Alba on postprandial blood glucose and insulin in healthy human subjects. Nutr Metab (Lond). 2009 Jul 14;6:29. doi: 10.1186/1743-7075-6-29. PMID: 19602243; PMCID: PMC2723107.
- Hamdy SM. Effect of Morus alba linn extract on enzymatic activities in diabetic rats. J Appl Sci Res. 2012;8:10-16.
- Hunyadi A, Martins A, Hsieh TJ, Seres A, Zupkó I. Chlorogenic acid and rutin play a major role in the in vivo anti-diabetic activity of Morus alba leaf extract on type II diabetic rats. PLoS One. 2012;7(11):e50619. doi: 10.1371/journal.pone.0050619. Epub 2012 Nov 21. PMID: 23185641; PMCID: PMC3503931.
- Naowaboot J, Pannangpetch P, Kukongviriyapan V, Prawan A, Kukongviriyapan U, Itharat A. Mulberry leaf extract stimulates glucose uptake and GLUT4 translocation in rat adipocytes. Am J Chin Med. 2012;40(1):163-75. doi: 10.1142/S0192415X12500139. PMID: 22298456.
- Laddha GP, Bavaskar SR, Mahale V, Baile SB. Antidiabetic effect of Morus alba on rabbit as animal model. Int Res J Pharm. 2012;3:334-336.
- Nazari M, Hajizadeh MR, Mahmoodi M, Mirzaei MR, Hassanshahi G. The regulatory impacts of Morus Alba leaf extract on some enzymes involved in glucose metabolism pathways in diabetic rat liver. Clin Lab. 2013;59(5-6):497-504. doi: 10.7754/clin.lab.2012.120611. PMID: 23865347.
- Sarikaphuti A, Nararatwanchai T, Hashiguchi T, Ito T, Thaworanunta S, Kikuchi K, Oyama Y, Maruyama I, Tancharoen S. Preventive effects of Morus alba L. anthocyanins on diabetes in Zucker diabetic fatty rats. Exp Ther Med. 2013 Sep;6(3):689-695. doi: 10.3892/etm.2013.1203. Epub 2013 Jul 4. PMID: 24137248; PMCID: PMC3786992.
- Al-Janabi OS, Amer MS, Khayri MH. Effects of the extracts of olive and Morus alba leaves on experimentally stz induced diabetes in male rats. Int J Sci Res. 2013;4:1526-1532. doi: 10.13140/RG.2.2.23546.85445.
- El-Azim SA, El-Raheem MT, Said MM, Abdeen MA. Effects of mulberry and jackfruit leaf extracts on blood glucose, oxidative stress and DNA damage in STZ/NA-induced diabetic rats. Diabetol Croat. 2015;44:3-19.
- Kar A, Mukherjee PK, Saha S, Bahadur S, Ahmmed SK, Pandit S. Possible herb-drug interaction of Morus alba L.-a potential anti-diabetic plant from Indian Traditional medicine. Indian J Trad Knowl. 2015;14:626-631.
- Wilson RD, Islam MS. Effects of white mulberry (Morus alba) leaf tea investigated in a type 2 diabetes model of rats. Acta Pol Pharm. 2015 Jan-Feb;72(1):153-60. PMID: 25850211.
- Yan F, Dai G, Zheng X. Mulberry anthocyanin extract ameliorates insulin resistance by regulating PI3K/AKT pathway in HepG2 cells and db/db mice. J Nutr Biochem. 2016 Oct;36:68-80. doi: 10.1016/j.jnutbio.2016.07.004. Epub 2016 Aug 4. PMID: 27580020.
- Madalageri NK, Nagaraj L, Nidamarthi SB. Evaluation and comparative study of hypoglycaemic activity of Morus alba with oral hypoglycaemic drug (glibenclamide) in alloxan induced diabetic rats. J Evolution Med Dent Sci. 2016;5:3162-3165. doi: 10.14260/jemds/2016/713.
- Basu P, Thallapareddy C, Maier C. In vitro antidiabetic activities of dioecious white mulberry (Morus alba, Moraceae). FASEB J. 2014;31:974. doi: 10.1096/fasebj.31.1_supplement.974.17.
- Assiri AMA, El-Beeh ME, Amin AH, Ramadan MF. Ameliorative impact of Morus alba leaves' aqueous extract against embryonic ophthalmic tissue malformation in streptozotocin-induced diabetic rats. Biomed Pharmacother. 2017 Nov;95:1072-1081. doi: 10.1016/j.biopha.2017.09.013. Epub 2017 Sep 14. PMID: 28922725.
- Sheng Y, Zheng S, Ma T, Zhang C, Ou X, He X, Xu W, Huang K. Mulberry leaf alleviates streptozotocin-induced diabetic rats by attenuating NEFA signaling and modulating intestinal microflora. Sci Rep. 2017 Sep 21;7(1):12041. doi: 10.1038/s41598-017-12245-2. PMID: 28935866; PMCID: PMC5608946.
- Mahmoud AM, Abd El-Twab SM, Abdel-Reheim ES. Consumption of polyphenol-rich Morus alba leaves extract attenuates early diabetic retinopathy: the underlying mechanism. Eur J Nutr. 2017 Jun;56(4):1671-1684. doi: 10.1007/s00394-016-1214-0. Epub 2016 Apr 8. PMID: 27059477.
- Ahn E, Lee J, Jeon YH, Choi SW, Kim E. Anti-diabetic effects of mulberry (Morus alba L.) branches and oxyresveratrol in streptozotocin-induced diabetic mice. Food Sci Biotechnol. 2017 Dec 12;26(6):1693-1702. doi: 10.1007/s10068-017-0223-y. PMID: 30263707; PMCID: PMC6049727.
- Ranjan B, Kumar R, Verma N, Mittal S, Pakrasi PL, Kumar RV. Evaluation of the Antidiabetic Properties of S-1708 Mulberry Variety. Pharmacogn Mag. 2017 Jul;13(Suppl 2):S280-S288. doi: 10.4103/pm.pm_490_16. Epub 2017 Jul 11. PMID: 28808393; PMCID: PMC5538167.
- Ge Q, Zhang S, Chen L, Tang M, Liu L, Kang M, Gao L, Ma S, Yang Y, Lv P, Kong M, Yao Q, Feng F, Chen K. Mulberry Leaf Regulates Differentially Expressed Genes in Diabetic Mice Liver Based on RNA-Seq Analysis. Front Physiol. 2018 Aug 7;9:1051. doi: 10.3389/fphys.2018.01051. PMID: 30131712; PMCID: PMC6090096.
- Bae UJ, Jung ES, Jung SJ, Chae SW, Park BH. Mulberry leaf extract displays antidiabetic activity in db/db mice via Akt and AMP-activated protein kinase phosphorylation. Food Nutr Res. 2018 Aug 22;62. doi: 10.29219/fnr.v62.1473. PMID: 30150922; PMCID: PMC6109265.
- Khyade VB. Influence of leaf decoction of mulberry, Morus alba (L.) on streptozotocin induced diabetes in brown rat, rattus norvegicus (L.). Int J Eng Res. 2018;6:1-23.
- Gurukar MSA, Chilkunda ND. Morus alba Leaf Bioactives Modulate Peroxisome Proliferator Activated Receptor γ in the Kidney of Diabetic Rat and Impart Beneficial Effect. J Agric Food Chem. 2018 Aug 1;66(30):7923-7934. doi: 10.1021/acs.jafc.8b01357. Epub 2018 Jul 17. Erratum in: J Agric Food Chem. 2021 May 5;69(17):5279. PMID: 29969905.
- Khyade VB. Leaf decoction of mulberry, Morus alba (L.) for management of streptozotocin induced diabetes in brown rat, rattus norvegicus (L.). Int J Sci Res Chem. 2018;3:89-114.
- Mahmudul H, Begum IA, Khatun S. The effects of mulberry fruits (Morus alba L.) Extract on alloxan induced diabetic rats. World J Adv Healthc Res. 2018;2:102-107.
- Kwon RH, Thaku N, Timalsina B, Park SE, Choi JS, Jung HA. Inhibition Mechanism of Components Isolated from Morus alba Branches on Diabetes and Diabetic Complications via Experimental and Molecular Docking Analyses. Antioxidants (Basel). 2022 Feb 14;11(2):383. doi: 10.3390/antiox11020383. PMID: 35204264; PMCID: PMC8869400.
- Ma X, Iwanaka N, Masuda S, Karaike K, Egawa T, Hamada T, Toyoda T, Miyamoto L, Nakao K, Hayashi T. Morus alba leaf extract stimulates 5'-AMP-activated protein kinase in isolated rat skeletal muscle. J Ethnopharmacol. 2009 Feb 25;122(1):54-9. doi: 10.1016/j.jep.2008.11.022. Epub 2008 Dec 3. PMID: 19101621.
- P S, Zinjarde SS, Bhargava SY, Kumar AR. Potent α-amylase inhibitory activity of Indian Ayurvedic medicinal plants. BMC Complement Altern Med. 2011 Jan 20;11:5. doi: 10.1186/1472-6882-11-5. PMID: 21251279; PMCID: PMC3037352.
- Habeeb MN, Naik PR, Moqbel FS. Inhibition of α-glucosidase and α-amylase by Morus alba linn leaf extracts. J Pharm Res. 2012;5:285-289.
- Adisakwattana S, Ruengsamran T, Kampa P, Sompong W. In vitro inhibitory effects of plant-based foods and their combinations on intestinal α-glucosidase and pancreatic α-amylase. BMC Complement Altern Med. 2012 Jul 31;12:110. doi: 10.1186/1472-6882-12-110. PMID: 22849553; PMCID: PMC3522002.
- Choi MY, Cho YJ. Isolation and identification of inhibitory compounds from Morus alba cv. Kuksang on α-amylase and α-glucosidase. J Life Sci. 2015;25:870-879. doi: 10.5352/JLS.2015.25.8.870.
- Choi KH, Lee HA, Park MH, Han JS. Mulberry (Morus alba L.) Fruit Extract Containing Anthocyanins Improves Glycemic Control and Insulin Sensitivity via Activation of AMP-Activated Protein Kinase in Diabetic C57BL/Ksj-db/db Mice. J Med Food. 2016 Aug;19(8):737-45. doi: 10.1089/jmf.2016.3665. Epub 2016 Jul 21. PMID: 27441957.
- Hwang SH, Li HM, Lim SS, Wang Z, Hong JS, Huang B. Evaluation of a Standardized Extract from Morus alba against α-Glucosidase Inhibitory Effect and Postprandial Antihyperglycemic in Patients with Impaired Glucose Tolerance: A Randomized Double-Blind Clinical Trial. Evid Based Complement Alternat Med. 2016;2016:8983232. doi: 10.1155/2016/8983232. Epub 2016 Nov 16. PMID: 27974904; PMCID: PMC5128732.
- Chae JW, Park HJ, Kang SA, Cha WS, Ahn DH, Cho YJ. Inhibitory effects of various mulberry fruits (morus alba L.) On related enzymes to adult disease. J Life Sci. 2012;22:920-927. doi: 10.5352/JLS.2012.22.7.920.
- Ma L, Ni H, Zou X, Yuan Y, Luo C, Liu B, Wang F, Xi Y, Chu Y, Xu P, Qiu X, Li S, Bu S. Mori cortex prevents kidney damage through inhibiting expression of inflammatory factors in the glomerulus in streptozocin-induced diabetic rats. Iran J Basic Med Sci. 2017 Jun;20(6):715-721. doi: 10.22038/IJBMS.2017.8842. PMID: 28868127; PMCID: PMC5569450.
- Wang Y, Xiang L, Wang C, Tang C, He X. Antidiabetic and antioxidant effects and phytochemicals of mulberry fruit (Morus alba L.) polyphenol enhanced extract. PLoS One. 2013 Jul 30;8(7):e71144. doi: 10.1371/journal.pone.0071144. PMID: 23936259; PMCID: PMC3728024.
- Król E, Jeszka-Skowron M, Krejpcio Z, Flaczyk E, Wójciak RW. The Effects of Supplementary Mulberry Leaf (Morus alba) Extracts on the Trace Element Status (Fe, Zn and Cu) in Relation to Diabetes Management and Antioxidant Indices in Diabetic Rats. Biol Trace Elem Res. 2016 Nov;174(1):158-165. doi: 10.1007/s12011-016-0696-1. Epub 2016 Apr 13. PMID: 27071614; PMCID: PMC5055558.
- Ranjan B, Kumar R, Verma N, Mittal S, Pakrasi PL, Kumar RV. Evaluation of antioxidant activity, phytochemical constituents and Anti-diabetic properties of C763 mulberry leaves. J Biol Sci Med. 2016;2:1-12.
- Jha S, Gupta SK, Bhattacharyya P, Ghosh A, Mandal P. In vitro antioxidant and antidiabetic activity of oligopeptides derived from different mulberry (Morus alba L.) cultivars. Phcog Res. 2018;10:361-367. doi: 10.4103/pr.pr_70_18.
- Hunyadi A, Veres K, Danko B, Kele Z, Weber E, Hetenyi A, Zupko I, Hsieh TJ. In vitro anti-diabetic activity and chemical characterization of an apolar fraction of Morus alba leaf water extract. Phytother Res. 2013 Jun;27(6):847-51. doi: 10.1002/ptr.4803. Epub 2012 Aug 16. PMID: 22899346.
- Trimarco V, Izzo R, Stabile E, Rozza F, Santoro M, Manzi MV, Serino F, Schiattarella GG, Esposito G, Trimarco B. Effects of a new combination of nutraceuticals with Morus alba on lipid profile, insulin sensitivity and endotelial function in dyslipidemic subjects. A cross-over, randomized, double-blind trial. High Blood Press Cardiovasc Prev. 2015 Jun;22(2):149-54. doi: 10.1007/s40292-015-0087-2. Epub 2015 Apr 14. PMID: 25870124; PMCID: PMC4461797.
- Tond SB, Fallah S, Salemi Z, Seifi M. Influence of mulberry leaf extract on serum adiponectin, visfatin and lipid profile levels in type 2 diabetic rats. Braz Arch Biol Technol. 2016;59. doi: 10.1590/1678-4324-2016160297.
- Lv Q, Lin J, Wu X, Pu H, Guan Y, Xiao P, He C, Jiang B. Novel active compounds and the anti-diabetic mechanism of mulberry leaves. Front Pharmacol. 2022 Oct 5;13:986931. doi: 10.3389/fphar.2022.986931. PMID: 36278175; PMCID: PMC9581293.
- Fongsodsri K, Thaipitakwong T, Rujimongkon K, Kanjanapruthipong T, Ampawong S, Reamtong O, Aramwit P. Mulberry-Derived 1-Deoxynojirimycin Prevents Type 2 Diabetes Mellitus Progression via Modulation of Retinol-Binding Protein 4 and Haptoglobin. Nutrients. 2022 Oct 28;14(21):4538. doi: 10.3390/nu14214538. PMID: 36364802; PMCID: PMC9658717.
- Hansawasdi C, Kawabata J. Alpha-glucosidase inhibitory effect of mulberry (Morus alba) leaves on Caco-2. Fitoterapia. 2006 Dec;77(7-8):568-73. doi: 10.1016/j.fitote.2006.09.003. Epub 2006 Sep 22. PMID: 17071014.
- Yogisha S, Raveesha KA. Alpha glucosidase inhibitory activity of Morus alba. Pharmacology OnLine. 2009;1: 404-409.
- Nazari M, Hajizadeh MR, Eftekhar A, Fattahpour S, Ziaaddini H, Hassanshahi G, Mahmoodi M, Rezaeian M. Comparative regulatory effects of Morus alba leaf extracts on hepatic enzymes in streptozotocin-induced diabetic and non-diabetic rats. Med Chem. 2014;S1:003. doi: 10.4172/2161-0444.S1-003.
- Mohammadi J, Naik PR. The histopathologic effects of Morus alba leaf extract on the pancreas of diabetic rats. Turk J Biol. 2012;36:211-216. doi: 10.3906/biy-1008-51.
- El-Sayyad HI, El-Sherbiny MA, Sobh MA, Abou-El-Naga AM, Ibrahim MA, Mousa SA. Protective effects of Morus alba leaves extract on ocular functions of pups from diabetic and hypercholesterolemic mother rats. Int J Biol Sci. 2011;7(6):715-28. doi: 10.7150/ijbs.7.715. Epub 2011 Jun 4. PMID: 21697998; PMCID: PMC3119844.
- Hunyadi A, Liktor-Busa E, Márki A, Martins A, Jedlinszki N, Hsieh TJ, Báthori M, Hohmann J, Zupkó I. Metabolic effects of mulberry leaves: exploring potential benefits in type 2 diabetes and hyperuricemia. Evid Based Complement Alternat Med. 2013;2013:948627. doi: 10.1155/2013/948627. Epub 2013 Dec 5. PMID: 24381639; PMCID: PMC3870074.
- Cai S, Sun W, Fan Y, Guo X, Xu G, Xu T, Hou Y, Zhao B, Feng X, Liu T. Effect of mulberry leaf (Folium Mori) on insulin resistance via IRS-1/PI3K/Glut-4 signalling pathway in type 2 diabetes mellitus rats. Pharm Biol. 2016 Nov;54(11):2685-2691. doi: 10.1080/13880209.2016.1178779. Epub 2016 May 9. PMID: 27158744.
- Takahashi M, Mineshita Y, Yamagami J, Wang C, Fujihira K, Tahara Y, Kim HK, Nakaoka T, Shibata S. Effects of the timing of acute mulberry leaf extract intake on postprandial glucose metabolism in healthy adults: a randomised, placebo-controlled, double-blind study. Eur J Clin Nutr. 2023 Apr;77(4):468-473. doi: 10.1038/s41430-023-01259-x. Epub 2023 Jan 17. PMID: 36650279; PMCID: PMC10115625.
- Khyade BV. Nephroprotective influence of aqueous decoction of mulberry leaves in hyperglycemia-induced oxidative stress in brown rat Rattus norvegicus (L). Int J Res Sci Eng. 2018;6:1-21.
- Soliman HA. The impact of Morus alba leaves extract on neurotransmitters & apoptosis experimental diabetic rats. J Biochem Mol Biol. 2013;31:35-48.
- Jiao Y, Wang X, Jiang X, Kong F, Wang S, Yan C. Antidiabetic effects of Morus alba fruit polysaccharides on high-fat diet- and streptozotocin-induced type 2 diabetes in rats. J Ethnopharmacol. 2017 Mar 6;199:119-127. doi: 10.1016/j.jep.2017.02.003. Epub 2017 Feb 2. PMID: 28163112.
- Kianifard D, Kianifard L. Effects of Morus alba extract on the microscopic changes of spermatogenesis in experimentally induced diabetes mellitus in adult rats. Med Sci. 2014;3:1491-1506. doi: 10.5455/medscience.2014.03.8151.
- Cui H, Lu T, Wang M, Zou X, Zhang Y, Yang X, Dong Y, Zhou H. Flavonoids from Morus alba L. Leaves: Optimization of Extraction by Response Surface Methodology and Comprehensive Evaluation of Their Antioxidant, Antimicrobial, and Inhibition of α-Amylase Activities through Analytical Hierarchy Process. Molecules. 2019 Jun 28;24(13):2398. doi: 10.3390/molecules24132398. PMID: 31261837; PMCID: PMC6651629.
- Wang S, Fang M, Ma YL, Zhang YQ. Preparation of the Branch Bark Ethanol Extract in Mulberry Morus alba, Its Antioxidation, and Antihyperglycemic Activity In Vivo. Evid Based Complement Alternat Med. 2014;2014:569652. doi: 10.1155/2014/569652. Epub 2014 Jan 22. PMID: 24587809; PMCID: PMC3920605.
- Alanazi AS, Anwar MJ, Alam MN. Hypoglycemic and antioxidant effect of Morus alba L. Stem bark extracts in streptozotocin-induced diabetes in rats. J Appl Pharm. 2017;9:234. doi: 10.21065/1920-4159.1000234.
- Wang PP, Huang Q, Chen C, You LJ, Liu RH, Luo ZG, Zhao MM, Fu X. The chemical structure and biological activities of a novel polysaccharide obtained from Fructus mori and its zinc derivative. J Funct Foods. 2019;54:64-73. doi: 10.1016/j.jff.2019.01.008.
- Chen F, Nakashima N, Kimura I, Kimura M. [Hypoglycemic activity and mechanisms of extracts from mulberry leaves (folium mori) and cortex mori radicis in streptozotocin-induced diabetic mice]. Yakugaku Zasshi. 1995 Jun;115(6):476-82. Japanese. doi: 10.1248/yakushi1947.115.6_476. PMID: 7666358.
- Singab AN, El-Beshbishy HA, Yonekawa M, Nomura T, Fukai T. Hypoglycemic effect of Egyptian Morus alba root bark extract: effect on diabetes and lipid peroxidation of streptozotocin-induced diabetic rats. J Ethnopharmacol. 2005 Sep 14;100(3):333-8. doi: 10.1016/j.jep.2005.03.013. PMID: 15885940.
- Mohammadi J, Naik PR. Evaluation of hypoglycemic effect of Morus alba in an animal model. Indian J Pharmacol. 2008 Jan;40(1):15-8. doi: 10.4103/0253-7613.40483. PMID: 21264155; PMCID: PMC3023115.
- Park JM, Bong HY, Jeong HI, Kim YK, Kim JY, Kwon O. Postprandial hypoglycemic effect of mulberry leaf in Goto-Kakizaki rats and counterpart control Wistar rats. Nutr Res Pract. 2009 Winter;3(4):272-8. doi: 10.4162/nrp.2009.3.4.272. Epub 2009 Dec 31. PMID: 20098579; PMCID: PMC2809233.
- Nakamura S, Hashiguchi M, Yamaguchi Y, Oku T. Hypoglycemic effects of Morus alba leaf extract on postprandial glucose and insulin levels in patients with type 2 diabetes treated with sulfonylurea hypoglycemic agents. J Diabetes Metab. 2011;2:158. doi: 10.4172/2155-6156.1000158.
- Shah NZ, Muhammad N, Azeem S, Rauf A. Hypoglycemic effect of crude methanolic extract as well as sub fractions of Morus alba on rabbits. Global J Pharmacol. 2013;7:91-94. doi: 10.5829/idosi.gjp.2013.7.1.110.
- Madalageri NK, Nagaraj L. Comparative study of hypoglycaemic activity of Morus alba with oral hypoglycaemic drug (metformin) in alloxan induced diabetic rats. Int J Basic Clin Pharmacol. 2016;5:2362-2367. doi: 10.18203/2319-2003.ijbcp20164056
- Lown M, Fuller R, Lightowler H, Fraser A, Gallagher A, Stuart B, Byrne C, Lewith G. Mulberry-extract improves glucose tolerance and decreases insulin concentrations in normoglycaemic adults: Results of a randomised double-blind placebo-controlled study. PLoS One. 2017 Feb 22;12(2):e0172239. doi: 10.1371/journal.pone.0172239. PMID: 28225835; PMCID: PMC5321430.
- Han X, Song C, Feng X, Wang Y, Meng T, Li S, Bai Y, Du B, Sun Q. Isolation and hypoglycemic effects of water extracts from mulberry leaves in Northeast China. Food Funct. 2020 Apr 30;11(4):3112-3125. doi: 10.1039/d0fo00012d. PMID: 32196541.
- Zhou QY, Liao X, Kuang HM, Li JY, Zhang SH. LC-MS Metabolite Profiling and the Hypoglycemic Activity of Morus alba L. Extracts. Molecules. 2022 Aug 23;27(17):5360. doi: 10.3390/molecules27175360. PMID: 36080128; PMCID: PMC9457631.
- Park SY, Jin BR, Lee YR, Kim YJ, Park JB, Jeon YH, Choi SW, Kwon O. Postprandial hypoglycemic effects of mulberry twig and root bark in vivo and in vitro. J Nutr Health. 2016;49:18-27. doi: 10.4163/jnh.2016.49.1.18.
- Wang L, Wang X, Wang Q. Mulberry seeds perform high hypoglycaemic effect partially by inhibition of α-glucosidase activity. Biomed Res. 2017;28:3568-3573.
- Salama AA, Ibrahim BM, Yassin NA, Mahmoud SS, Gamal El-Din AA, Shaffie NA. Regulatory effects of Morus alba aqueous leaf extract in streptozotocin-induced diabetic nephropathy. Der Pharma Chem. 2017;9:46-52.
- Saenthaweesuk S, Thuppia A, Rabintossaporn P, Ingkaninan K, Sireeratawong S. The study of hypoglycemic effects of the Morus alba L. leaf extract and histology of the pancreatic islet cells in diabetic and normal rats. Thammasat Med J. 2009;9:148-155. doi: 10.1055/s-0031-1282405.
- Liu Y, Li X, Xie C, Luo X, Bao Y, Wu B, Hu Y, Zhong Z, Liu C, Li M. Prevention Effects and Possible Molecular Mechanism of Mulberry Leaf Extract and its Formulation on Rats with Insulin-Insensitivity. PLoS One. 2016 Apr 7;11(4):e0152728. doi: 10.1371/journal.pone.0152728. PMID: 27054886; PMCID: PMC4824359.
- Basyigit B, Mustafa CA, Akyurt B. Phenolic compounds content, antioxidant and antidiabetic potentials of seven edible leaves. Gıda J Food. 2018;43:876-885. doi: 10.15237/gida.GD18076.
- Nickavar B, Mosazadeh G. Influence of three Morus species extracts on α-amylase activity. Iran J Pharm Res. 2009;8:115-119.
- Mahmoud HI, ElRab SM, Khalil AF, Ismael SM. Hypoglycemic effect of white (Morus alba L.) and black (Morus nigra L.) mulberry fruits in diabetic rat. Eur J Chem. 2014;5(1):65-72. doi: 10.5155/eurjchem.5.1.65‐72.903.
- Long XS , Liao ST , Wen P , Zou YX , Liu F , Shen WZ , Hu TG . Superior hypoglycemic activity of mulberry lacking monosaccharides is accompanied by better activation of the PI3K/Akt and AMPK signaling pathways. Food Funct. 2020 May 1;11(5):4249-4258. doi: 10.1039/d0fo00427h. Epub 2020 May 1. PMID: 32356550.
- Andallu B, Varadacharyulu NCh. Control of hyperglycemia and retardation of cataract by mulberry (Morus indica L.) leaves in streptozotocin diabetic rats. Indian J Exp Biol. 2002 Jul;40(7):791-5. PMID: 12597548.
- Andallu B, Vinay Kumar AV, Varadacharyulu NCh. Lipid abnormalities in streptozotocin-diabetes: Amelioration by Morus indica L. cv Suguna leaves. Int J Diabetes Dev Ctries. 2009 Jul;29(3):123-8. doi: 10.4103/0973-3930.54289. PMID: 20165649; PMCID: PMC2822216.
- Bondada A, Allagadda, Venkata VK, Nallanchakravarthula V. Influence of mulberry (Morus indica L.) leaves on antioxidants and antioxidant enzymes in STZ-diabetic rats. Int J Diabetes Dev Ctries. 2014;34:69-76. doi: 10.1007/s13410-013-0139-x.
- Andallu B, Varadacharyulu NCh. Antioxidant role of mulberry (Morus indica L. cv. Anantha) leaves in streptozotocin-diabetic rats. Clin Chim Acta. 2003 Dec;338(1-2):3-10. doi: 10.1016/s0009-8981(03)00322-x. PMID: 14637259.
- Andallu B, Varadacharyulu NC. Gluconeogenic substrates and hepatic gluconeogenic enzymes in streptozotocin-diabetic rats: effect of mulberry (Morus indica L.) leaves. J Med Food. 2007 Mar;10(1):41-8. doi: 10.1089/jmf.2005.034. PMID: 17472465.
- Devi VD, Urooj A. Hypoglycemic potential of Morus indica. L and Costus igneus. Nak.--a preliminary study. Indian J Exp Biol. 2008 Aug;46(8):614-6. PMID: 18814491.
- Kumar RP, Sujatha D, Saleem TsM, Chetty CM, Ranganayakulu D. Potential antidiabetic and antioxidant activities of Morus indica and Asystasia gangetica in alloxan-induced diabetes mellitus. J Exp Pharmacol. 2010 Feb 9;2:29-36. doi: 10.2147/jep.s8947. PMID: 27186088; PMCID: PMC4863283.
- Johri S, Chauhan K. Effect of mulberry (Morus indica) leaves and bark on type 2 diabetics. Int J Food Agric Vet Sci. 2014;4:1-6.
- Devi VD, Asna U. Possible hypoglycemic attributes of Morus indica L. and Costus speciosus: An in vitro Study. Malays J Nutr. 2015;21:83-91.
- Asna U, Vishalakshi DD. Potential role of Morus indica adjunct therapy in subjects with type 2 diabetes mellitus. Asian J Phytomed Clin Res. 2017;5:67-75.
- Riche DM, Riche KD, East HE, Barrett EK, May WL. Impact of mulberry leaf extract on type 2 diabetes (Mul-DM): A randomized, placebo-controlled pilot study. Complement Ther Med. 2017 Jun;32:105-108. doi: 10.1016/j.ctim.2017.04.006. Epub 2017 Apr 27. PMID: 28619294.
- Satish A, Asna A. Bioactive compounds from Morus indica as inhibitors of advanced glycation end products. Indian J Pharm Sci. 2019;81:282-292. doi: 10.4172/pharmaceutical-sciences.1000509.
- Vishalakshi DD, Asna U. Antihyperglycemic and hypolipidemic effect of Morus indica L. in streptozotocin induced diabetic rats. Ann Phytomed. 2014;3:5-59.
- Kelkar SM, Bapat VA, Ganapathi TR. Kaklij GS, Rao PS, Heble MR. Determination of hypoglycemic activity in Morus indica L., (Mulberry) shoot cultures. Curr Sci. 1996;71(1):71-72.
- Andallu B, Suryakantham V, Lakshmi Srikanthi B, Reddy GK. Effect of mulberry (Morus indica L.) therapy on plasma and erythrocyte membrane lipids in patients with type 2 diabetes. Clin Chim Acta. 2001 Dec;314(1-2):47-53. doi: 10.1016/s0009-8981(01)00632-5. PMID: 11718678.
- Sahasrabhojaney V, Khobragade LR, Turankar AV, Hinge A, Motghare VM, Paranjape SG, Kumbhalkar S, Pinge, SS, Khanzode SS, Turankar PV. Hypoglycemic and hypolipidemic activity of mulberry (Morus indica) in type 2 diabetes patients. Indian Med Gaz. 2013;8:21-27.
- Basnet P, Kadota S, Terashima S, ShimizuM, Namba T. Two new 2-arylbenzofuran derivatives from hypoglycemic activity-bearing fractions of Morus insignis. Chem Pharm Bull (Tokyo). 1993 Jul;41(7):1238-43. doi: 10.1248/cpb.41.1238. PMID: 8374993.
- Liu HY, Wang J, Ma J, Zhang YQ. Interference effect of oral administration of mulberry branch bark powder on the incidence of type II diabetes in mice induced by streptozotocin. Food Nutr Res. 2016 Jun 1;60:31606. doi: 10.3402/fnr.v60.31606. PMID: 27257845; PMCID: PMC4891971.
- Qiu F, Wang J, Liu HY, Zhang YQ. Mulberry Bark Alleviates Effect of STZ Inducing Diabetic Mice through Negatively Regulating FoxO1. Evid Based Complement Alternat Med. 2019 Jan 21;2019:2182865. doi: 10.1155/2019/2182865. PMID: 30800168; PMCID: PMC6360591.
- Liu HY, Fang M, Zhang YQ. In vivo hypoglycaemic effect and inhibitory mechanism of the branch bark extract of the mulberry on STZ-induced diabetic mice. ScientificWorldJournal. 2014;2014:614265. doi: 10.1155/2014/614265. Epub 2014 Aug 6. PMID: 25177729; PMCID: PMC4142180.
- Shukla RK, Painuly D, Shukla A, Singh J, Porval A, Vats S. In vitro biological activity and total phenolic content of Morus nigra seeds. J Chem Pharm Res. 2014;6:200-210.
- Júnior IIDS, Barbosa HM, Carvalho DCR, Barros RA, Albuquerque FP, da Silva DHA, Souza GR, Souza NAC, Rolim LA, Silva FMM, Duarte GIBP, Almeida JRGDS, de Oliveira Júnior FM, Gomes DA, Lira EC. Brazilian Morus nigra Attenuated Hyperglycemia, Dyslipidemia, and Prooxidant Status in Alloxan-Induced Diabetic Rats. ScientificWorldJournal. 2017;2017:5275813. doi: 10.1155/2017/5275813. Epub 2017 Apr 16. PMID: 28567440; PMCID: PMC5439258.
- Abdalla ES. The biological benefits of black mulberry (Morus nigra) intake on diabetic and non-diabetic subjects. Res J Agric Biol Sci. 2006;2:349-357.
- Volpato GT, Calderon IM, Sinzato S, Campos KE, Rudge MV, Damasceno DC. Effect of Morus nigra aqueous extract treatment on the maternal-fetal outcome, oxidative stress status and lipid profile of streptozotocin-induced diabetic rats. J Ethnopharmacol. 2011 Dec 8;138(3):691-6. doi: 10.1016/j.jep.2011.09.044. Epub 2011 Oct 1. PMID: 21986227.
- Araujo CM, Lúcio Kde P, Silva ME, Isoldi MC, de Souza GH, Brandão GC, Schulz R, Costa DC. Morus nigra leaf extract improves glycemic response and redox profile in the liver of diabetic rats. Food Funct. 2015 Nov;6(11):3490-9. doi: 10.1039/c5fo00474h. Epub 2015 Aug 21. PMID: 26294257.
- Ahangarpour A, Ghanbari H, Hashemitabar M, Moghaddam HF. Effects of Morus nigra leaves extract on insulin secretion from isolated islets of langerhans in male mouse. Indian J Physiol Pharmacol. 2016;60:386-391.
- Rahimi-Madiseh M, Naimi A, Heydarian E, Rafieian-Kopaei M. Renal biochemical and histopathological alterations of diabetic rats under treatment with hydro alcoholic Morus nigra extrac. J Renal Inj Prev. 2016 Nov 22;6(1):56-60. doi: 10.15171/jrip.2017.10. PMID: 28487873; PMCID: PMC5414520.
- Hago S, Mahrous EA, Moawad M, Abdel-Wahab S, Abdel-Sattar E. Evaluation of antidiabetic activity of Morus nigra L. and Bauhinia variegata L. leaves as Egyptian remedies used for the treatment of diabetes. Nat Prod Res. 2021 Mar;35(5):829-835. doi: 10.1080/14786419.2019.1601094. Epub 2019 Apr 10. PMID: 30968706.
- Yazdankhah S, Hojjati M, Azizi MH. The Antidiabetic Potential of Black Mulberry Extract-Enriched Pasta through Inhibition of Enzymes and Glycemic Index. Plant Foods Hum Nutr. 2019 Mar;74(1):149-155. doi: 10.1007/s11130-018-0711-0. PMID: 30632080.
- Barati S, Momtaze H, Azhdary MM. The effect of hydro-alcoholic extract of Morus nigra leaf on lipids and sugar in serum of diabetic rats. Asian J Biomed Pharm Sci. 2012;2:38-40.
- Hoseini HF, Saeidnia S, Gohari AR, Yazdanpanah M, Hadjiakhoondi A. Investigation of antihyperglycemic effect of Morus nigra on blood glucose level in stereptozotocin diabetic rats. Pharmacology Online. 2009;3:732-736.
- Sukandar EY, Safitri D, Aini NN, The study of ethanolic extract of binahong leaves (Anredera cordifolia [ten.] Steenis) and mulberry leaves (Morus nigra l.) In combination on hyperlipidemic-induced rats. Asian J Pharm Clin Res. 2016;9:288-298. doi: 10.22159/ajpcr.2016.v9i6.14412.
- Sharma SB, Gupta S, Ac R, Singh UR, Rajpoot R, Shukla SK. Antidiabetogenic action of Morus rubra L. leaf extract in streptozotocin-induced diabetic rats. J Pharm Pharmacol. 2010 Feb;62(2):247-55. doi: 10.1211.jpp/62.02.0013. PMID: 20487205.
- Sharma SB, Tanwar RS, Rini AC, Singh UR, Gupta S, Shukla SK. Protective effect of Morus rubra L. leaf extract on diet-induced atherosclerosis in diabetic rats. Indian J Biochem Biophys. 2010 Feb;47(1):26-31. PMID: 21086751.
- Kellogg JJ, Paine MF, McCune JS, Oberlies NH, Cech NB. Selection and characterization of botanical natural products for research studies: a NaPDI center recommended approach. Nat Prod Rep. 2019 Aug 14;36(8):1196-1221. doi: 10.1039/c8np00065d. PMID: 30681109; PMCID: PMC6658353.
- Li M, Wu X, Wang X, Shen T, Ren D. Two novel compounds from the root bark of Morus alba L. Nat Prod Res. 2018 Jan;32(1):36-42. doi: 10.1080/14786419.2017.1327862. Epub 2017 May 19. PMID: 28521570.
- Paudel P, Yu T, Seong SH, Kuk EB, Jung HA, Choi JS. Protein Tyrosine Phosphatase 1B Inhibition and Glucose Uptake Potentials of Mulberrofuran G, Albanol B, and Kuwanon G from Root Bark of Morus alba L. in Insulin-Resistant HepG2 Cells: An In Vitro and In Silico Study. Int J Mol Sci. 2018 May 22;19(5):1542. doi: 10.3390/ijms19051542. PMID: 29786669; PMCID: PMC5983811.
- Asano N, Yamashita T, Yasuda K, Ikeda K, Kizu H, Kameda Y, Kato A, Nash RJ, Lee HS, Ryu KS. Polyhydroxylated alkaloids isolated from mulberry trees (Morusalba L.) and silkworms (Bombyx mori L.). J Agric Food Chem. 2001 Sep;49(9):4208-13. doi: 10.1021/jf010567e. PMID: 11559112.
- Kim SB, Chang BY, Hwang BY, Kim SY, Lee MK. Pyrrole alkaloids from the fruits of Morus alba. Bioorg Med Chem Lett. 2014 Dec 15;24(24):5656-5659. doi: 10.1016/j.bmcl.2014.10.073. Epub 2014 Oct 29. PMID: 25467154.
- Liu Z, Yang Y, Dong W, Liu Q, Wang R, Pang J, Xia X, Zhu X, Liu S, Shen Z, Xiao Z, Liu Y. Investigation on the Enzymatic Profile of Mulberry Alkaloids by Enzymatic Study and Molecular Docking. Molecules. 2019 May 8;24(9):1776. doi: 10.3390/molecules24091776. PMID: 31071910; PMCID: PMC6539310.
- Cui L, Na M, Oh H, Bae EY, Jeong DG, Ryu SE, Kim S, Kim BY, Oh WK, Ahn JS. Protein tyrosine phosphatase 1B inhibitors from Morus root bark. Bioorg Med Chem Lett. 2006 Mar 1;16(5):1426-9. doi: 10.1016/j.bmcl.2005.11.071. Epub 2005 Dec 13. PMID: 16356713.
- Ha MT, Seong SH, Nguyen TD, Cho WK, Ah KJ, Ma JY, Woo MH, Choi JS, Min BS. Chalcone derivatives from the root bark of Morus alba L. act as inhibitors of PTP1B and α-glucosidase. Phytochemistry. 2018 Nov;155:114-125. doi: 10.1016/j.phytochem.2018.08.001. Epub 2018 Aug 10. PMID: 30103164.
- Seo KH, Nam YH, Kim YE, Hong EK, Hong BN, Kang TH, Baek NI. Recovery effect of flavonoids from Morus alba fruits on alloxan-induced pancreatic islet in Zebrafish (Dinio rerio). J Appl Biol Chem. 2015;58:51-54. doi: 10.3839/jabc.2015.009.
- Kwon HJ, Chung JY, Kim JY, Kwon O. Comparison of 1-deoxynojirimycin and aqueous mulberry leaf extract with emphasis on postprandial hypoglycemic effects: in vivo and in vitro studies. J Agric Food Chem. 2011 Apr 13;59(7):3014-9. doi: 10.1021/jf103463f. Epub 2011 Mar 3. PMID: 21370820.
- Kim JY, Chung HI, Jung KO, Wee JH, Kwon O. Chemical profiles and hypoglycemic activities of mulberry leaf extracts vary with ethanol concentration. Food Sci Biotechnol. 2013;22:1443-1447. doi: 10.1007/s10068-013-0235-1.
- Zhang YL, Luo JG, Wan CX, Zhou ZB, Kong LY. Four New Flavonoids with α-Glucosidase Inhibitory Activities from Morus alba var. tatarica. Chem Biodivers. 2015 Nov;12(11):1768-76. doi: 10.1002/cbdv.201500005. PMID: 26567954.
- Zhang YL, Luo JG, Wan CX, Zhou ZB, Kong LY. Geranylated 2-arylbenzofurans from Morus alba var. tatarica and their α-glucosidase and protein tyrosine phosphatase 1B inhibitory activities. Fitoterapia. 2014 Jan;92:116-26. doi: 10.1016/j.fitote.2013.10.017. Epub 2013 Nov 9. PMID: 24216050.
- He H, Lu YH. Comparison of inhibitory activities and mechanisms of five mulberry plant bioactive components against α-glucosidase. J Agric Food Chem. 2013 Aug 28;61(34):8110-9. doi: 10.1021/jf4019323. Epub 2013 Aug 13. PMID: 23909841.
- Jang YJ, Leem HH, Jeon YH, Lee DH, Choi SW. Isolation and identification of α-glucosidase inhibitors from Morus root bark. J Korean Soc Food Sci Nutr. 2015;44:1090-1099. doi: 10.3746/jkfn.2015.44.7.1090.
- Han T, Wang W, Cao X. Purification and activity research of hypoglycemic components from the extract of mulberry (Morus alba l.) leaves. Sep Sci plus. 2018;1:520-525. doi: 10.1002/sscp.201800036.
- Anandan S, Mahadevamurthy M, Chandra Urooj A. Ex vivo and in silico molecular docking studies of aldose reductase inhibitory activity of apigenin from morus indica L. J Young Pharm. 2019;11:101-104. doi:10.5530/jyp.2019.11.21.
- Tang BQ, Yang TT, Yang WG, Wang WJ, Zhang XQ, Ye WC. Chemical constituents in leaves of Morus atropurpurea and their α-glucosidase activity. Chin Trad Herb Drugs. 2013;22: 3109-3113.
- Hong HC, Li SL, Zhang XQ, Ye WC, Zhang QW. Flavonoids with α-glucosidase inhibitory activities and their contents in the leaves of Morus atropurpurea. Chin Med. 2013 Oct 14;8(1):19. doi: 10.1186/1749-8546-8-19. PMID: 24125526; PMCID: PMC4016240.
- Nojima H, Kimura I, Chen FJ, Sugihara Y, Haruno M, Kato A, Asano N. Antihyperglycemic effects of N-containing sugars from Xanthocercis zambesiaca, Morus bombycis, Aglaonema treubii, and Castanospermum australe in streptozotocin-diabetic mice. J Nat Prod. 1998 Mar;61(3):397-400. doi: 10.1021/np970277l. PMID: 9544568.
- Heo SI, Jin YS, Jung MJ, Wang MH. Antidiabetic properties of 2,5-dihydroxy-4,3'-di(beta-D-glucopyranosyloxy)-trans-stilbene from mulberry (Morus bombycis koidzumi) root in streptozotocin-induced diabetic rats. J Med Food. 2007 Dec;10(4):602-7. doi: 10.1089/jmf.2006.0241. PMID: 18158829.
- Qiao Y, Nakayama J, Ikeuchi T, Ito M, Kimura T, Kojima K, Takita T, Yasukawa K. Kinetic analysis of inhibition of α-glucosidase by leaf powder from Morus australis and its component iminosugars. Biosci Biotechnol Biochem. 2020 Oct;84(10):2149-2156. doi: 10.1080/09168451.2020.1783991. Epub 2020 Jul 13. PMID: 32660357.
- Kong WH, Oh SH, Ahn YR, Kim KW, Kim JH, Seo SW. Antiobesity effects and improvement of insulin sensitivity by 1-deoxynojirimycin in animal models. J Agric Food Chem. 2008 Apr 23;56(8):2613-9. doi: 10.1021/jf073223i. Epub 2008 Mar 26. PMID: 18363357.
- Xiao PJ, Zeng JC, Lin P, Tang DB, Yuan E, Tu YG, Zhang QF, Chen JG, Peng DY, Yin ZP. Chalcone-1-Deoxynojirimycin Heterozygote Reduced the Blood Glucose Concentration and Alleviated the Adverse Symptoms and Intestinal Flora Disorder of Diabetes Mellitus Rats. Molecules. 2022 Nov 4;27(21):7583. doi: 10.3390/molecules27217583. PMID: 36364410; PMCID: PMC9658082.
- Zhang R, Zhang Y, Huang G, Xin X, Tang L, Li H, Lee KS, Jin BR, Gui Z. Chemical synthesis, inhibitory activity and molecular mechanism of 1-deoxynojirimycin-chrysin as a potent α-glucosidase inhibitor. RSC Adv. 2021 Dec 1;11(61):38703-38711. doi: 10.1039/d1ra07753h. PMID: 35493254; PMCID: PMC9044198.
- Méndez L, Muñoz S, Barros L, Miralles-Pérez B, Romeu M, Ramos-Romero S, Torres JL, Medina I. Combined Intake of Fish Oil and D-Fagomine Prevents High-Fat High-Sucrose Diet-Induced Prediabetes by Modulating Lipotoxicity and Protein Carbonylation in the Kidney. Antioxidants (Basel). 2023 Mar 19;12(3):751. doi: 10.3390/antiox12030751. PMID: 36978999; PMCID: PMC10045798.
- Takasu S, Parida IS, Onose S, Ito J, Ikeda R, Yamagishi K, Higuchi O, Tanaka F, Kimura T, Miyazawa T, Nakagawa K. Evaluation of the anti-hyperglycemic effect and safety of microorganism 1-deoxynojirimycin. PLoS One. 2018 Jun 13;13(6):e0199057. doi: 10.1371/journal.pone.0199057. PMID: 29897983; PMCID: PMC5999102.
- Li YG, Ji DF, Zhong S, Lv ZQ, Lin TB, Chen S, Hu GY. Hybrid of 1-deoxynojirimycin and polysaccharide from mulberry leaves treat diabetes mellitus by activating PDX-1/insulin-1 signaling pathway and regulating the expression of glucokinase, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase in alloxan-induced diabetic mice. J Ethnopharmacol. 2011 Apr 12;134(3):961-70. doi: 10.1016/j.jep.2011.02.009. Epub 2011 Feb 17. PMID: 21333726.
- Li YG, Ji DF, Zhong S, Lv ZQ, Lin TB. Cooperative anti-diabetic effects of deoxynojirimycin-polysaccharide by inhibiting glucose absorption and modulating glucose metabolism in streptozotocin-induced diabetic mice. PLoS One. 2013 Jun 6;8(6):e65892. doi: 10.1371/journal.pone.0065892. PMID: 23755289; PMCID: PMC3675047.
- Wang M, Gao LX, Wang J, Li JY, Yu MH, Li J, Hou AJ. Diels-Alder adducts with PTP1B inhibition from Morus notabilis. Phytochemistry. 2015 Jan;109:140-6. doi: 10.1016/j.phytochem.2014.10.015. Epub 2014 Nov 7. PMID: 25457492.
- Ji T, Su SL, Guo S, Qian DW, Ouyang Z, Duan JA. [Evaluate drug interaction of multi-components in Morus alba leaves based on α-glucosidase inhibitory activity]. Zhongguo Zhong Yao Za Zhi. 2016 Jun;41(11):1999-2006. Chinese. doi: 10.4268/cjcmm20161105. PMID: 28901092.
- Alamgeer, Ambreen Malik U, Haseeb A, Umme Habiba H, Mueen Ahmad C. Traditional medicines of plant origin used for the treatment of inflammatory disorders in Pakistan: A review. J Tradit Chin Med. 2018 Aug;38(4):636-656. PMID: 32186090.
- Paul A, Rajiung M, Zaman K, Chaudhary SK, Bhat HR, Shakya A. An overview of phytochemical and pharmacological profile of Morus alba linn. Curr Bioact Compd. 2021;17:15-64. doi: 10.2174/1573407216666201228114004.
- Yadav S, Nair N, Biharee A, Prathap VM, Majeed J. Updated ethnobotanical notes, phytochemistry and phytopharmacology of plants belonging to the genus Morus (Family: Moraceae). Phytomed Plus. 2022;2:100120. doi: 10.1016/j.phyplu.2021.100120.
- Jan B, Parveen R, Zahiruddin S, Khan MU, Mohapatra S, Ahmad S. Nutritional constituents of mulberry and their potential applications in food and pharmaceuticals: A review. Saudi J Biol Sci. 2021 Jul;28(7):3909-3921. doi: 10.1016/j.sjbs.2021.03.056. Epub 2021 Mar 31. PMID: 34220247; PMCID: PMC8241616.
- Chen C, Mohamad Razali UH, Saikim FH, Mahyudin A, Mohd Noor NQI. Morus alba L. Plant: Bioactive Compounds and Potential as a Functional Food Ingredient. Foods. 2021 Mar 23;10(3):689. doi: 10.3390/foods10030689. PMID: 33807100; PMCID: PMC8004891.
- Zhang H, Ma ZF, Luo X, Li X. Effects of Mulberry Fruit (Morus alba L.) Consumption on Health Outcomes: A Mini-Review. Antioxidants (Basel). 2018 May 21;7(5):69. doi: 10.3390/antiox7050069. PMID: 29883416; PMCID: PMC5981255.
- Ramesh HL, Sivaram V, Yogananda Murthy VY. Antioxidant and medicinal properties of mulberry (Morus sp.): A review. World J Pharm Res. 2014;3(6):320-343.
- Dobrinas S, Soceanu A, Popescu V, Carazeanu Popovici I, Jitariu D. Relationship between total phenolic content, antioxidant capacity, Fe and Cu content from tea plant samples at different brewing times. Processes 2021;9(8):1311. doi: 10.3390/pr9081311.
- Jin Q, Yang J, Ma L, Cai J, Li J. Comparison of Polyphenol Profile and Inhibitory Activities Against Oxidation and α-Glucosidase in Mulberry (Genus Morus) Cultivars from China. J Food Sci. 2015 Nov;80(11):C2440-51. doi: 10.1111/1750-3841.13099. Epub 2015 Oct 15. PMID: 26469191.
- Song W, Wang HJ, Bucheli P, Zhang PF, Wei DZ, Lu YH. Phytochemical profiles of different mulberry (Morus sp.) species from China. J Agric Food Chem. 2009 Oct 14;57(19):9133-40. doi: 10.1021/jf9022228. PMID: 19761189.
- Xu Y, Guo H, Zhao T, Fu J, Xu Y. Mulberroside A from Cortex Mori Enhanced Gut Integrity in Diabetes. Evid Based Complement Alternat Med. 2021 May 20;2021:6655555. doi: 10.1155/2021/6655555. PMID: 34104203; PMCID: PMC8159636.
- Zhou J, Li SX, Wang W, Guo XY, Lu XY, Yan XP, Huang D, Wei BY, Cao L. Variations in the levels of mulberroside A, oxyresveratrol, and resveratrol in mulberries in different seasons and during growth. ScientificWorldJournal. 2013 Aug 19;2013:380692. doi: 10.1155/2013/380692. PMID: 24023529; PMCID: PMC3760103.
- Hao JY, Wan Y, Yao XH, Zhao WG, Hu RZ, Chen C, Li L, Zhang DY, Wu GH. Effect of different planting areas on the chemical compositions and hypoglycemic and antioxidant activities of mulberry leaf extracts in Southern China. PLoS One. 2018 Jun 26;13(6):e0198072. doi: 10.1371/journal.pone.0198072. PMID: 29944667; PMCID: PMC6019398.
- Esti Wulandari YR, Dewi Prasasty V, Rio A, Geniola C. Determination of 1-Deoxynojirimycin content and phytochemical profiles from young and mature mulberry leaves of Morus Spp. OnLine J Biol Sci. 2019 July;19(2):124-131. doi: 10.3844/ojbsci.2019.124.131.
- Lu HP, Jia YN, Peng YL, Yu Y, Sun SL, Yue MT, Pan MH, Zeng LS, Xu L. Oxyresveratrol, a Stilbene Compound from Morus alba L. Twig Extract Active Against Trichophyton rubrum. Phytother Res. 2017 Dec;31(12):1842-1848. doi: 10.1002/ptr.5926. Epub 2017 Oct 11. PMID: 29024160.
- Joung DK, Choi SH, Kang OH, Kim SB, Mun SH, Seo YS, Kang DH, Gong R, Shin DW, Kim YC, Kwon DY. Synergistic effects of oxyresveratrol in conjunction with antibiotics against methicillin-resistant Staphylococcus aureus. Mol Med Rep. 2015 Jul;12(1):663-7. doi: 10.3892/mmr.2015.3345. Epub 2015 Feb 12. PMID: 25683461.
- Chen YC, Tien YJ, Chen CH, Beltran FN, Amor EC, Wang RJ, Wu DJ, Mettling C, Lin YL, Yang WC. Morus alba and active compound oxyresveratrol exert anti-inflammatory activity via inhibition of leukocyte migration involving MEK/ERK signaling. BMC Complement Altern Med. 2013 Feb 23;13:45. doi: 10.1186/1472-6882-13-45. PMID: 23433072; PMCID: PMC3639811.
- Amorntaveechai A, Osathanon T, Pavasant P, Sooampon S. Effect of resveratrol and oxyresveratrol on deferoxamine-induced cancer stem cell marker expression in human head and neck squamous cell carcinoma. J Oral Biol Craniofac Res. 2022 Mar-Apr;12(2):253-257. doi: 10.1016/j.jobcr.2022.03.003. Epub 2022 Mar 16. PMID: 35313655; PMCID: PMC8933841.
- Huang HL, Zhang JQ, Chena GT, Lu ZQ, Sha N, Guo DA. Simultaneous determination of oxyresveratrol and resveratrol in rat bile and urine by HPLC after oral administration of Smilax china extract. Nat Prod Commun. 2009 Jun;4(6):825-30. PMID: 19634330.
- Alishlah T, Mun’im A, Jufri M. Optimization of imidazolium-based ionic liquid-microwave assisted extraction for oxyresveratrol extraction from Morus alba roots. J Young Pharm. 2018 July;10(3):272-275. doi: 10.5530/jyp.2018.10.61.
- Fadhila M, Mun’im A, Jufri M. Ionic Liquid-based Microwave-Assisted Extraction (Il-MAE) of oxyresveratrol from Morus alba Roots. J Appl Pharm Sci. 2018 June;8(06):8-13. doi: 10.7324/JAPS.2018.8602.
- Duangdee N, Chamboonchu N, Kongkiatpaiboon S, Prateeptongkum S. Quantitative 1 HNMR spectroscopy for the determination of oxyresveratrol in Artocarpus lacucha heartwood. Phytochem Anal. 2019 Nov;30(6):617-622. doi: 10.1002/pca.2834. Epub 2019 Apr 24. PMID: 31020748.
- Likhitwitayawuid K. Oxyresveratrol: Sources, Productions, Biological Activities, Pharmacokinetics, and Delivery Systems. Molecules. 2021 Jul 11;26(14):4212. doi: 10.3390/molecules26144212. PMID: 34299485; PMCID: PMC8307110.
- Sabater-Jara AB, Almagro L, Nicolás Sánchez I, Pedreño MÁ. Biotechnological Approach to Increase Oxyresveratrol Production in Mulberry In Vitro Plants under Elicitation. Plants (Basel). 2023 Jan 25;12(3):546. doi: 10.3390/plants12030546. PMID: 36771627; PMCID: PMC9920829.
- Kim JK, Kim M, Cho SG, Kim MK, Kim SW, Lim YH. Biotransformation of mulberroside A from Morus alba results in enhancement of tyrosinase inhibition. J Ind Microbiol Biotechnol. 2010 Jun;37(6):631-7. doi: 10.1007/s10295-010-0722-9. Epub 2010 Apr 22. PMID: 20411402.
- Komaikul J, Kitisripanya T, Tanaka H, Sritularak B, Putalun W. Enhanced Mulberroside A Production from Cell Suspension and Root Cultures of Morus alba Using Elicitation. Nat Prod Commun. 2015 Jul;10(7):1253-6. PMID: 26411024.
- Gómez L, Molinar-Toribio E, Calvo-Torras MÁ, Adelantado C, Juan ME, Planas JM, Cañas X, Lozano C, Pumarola S, Clapés P, Torres JL. D-Fagomine lowers postprandial blood glucose and modulates bacterial adhesion. Br J Nutr. 2012 Jun;107(12):1739-46. doi: 10.1017/S0007114511005009. Epub 2011 Oct 3. PMID: 22017795.
- Chun-Fang, Zhang BB, Lin-Han, Gao CF, Min-Wang. d-Fagomine Attenuates High Glucose-Induced Endothelial Cell Oxidative Damage by Upregulating the Expression of PGC-1α. J Agric Food Chem. 2018 Mar 21;66(11):2758-2764. doi: 10.1021/acs.jafc.7b05942. Epub 2018 Feb 28. PMID: 29489344.
- Ramos-Romero S, Hereu M, Atienza L, Casas J, Taltavull N, Romeu M, Amézqueta S, Dasilva G, Medina I, Torres JL. Functional Effects of the Buckwheat Iminosugar d-Fagomine on Rats with Diet-Induced Prediabetes. Mol Nutr Food Res. 2018 Aug;62(16):e1800373. doi: 10.1002/mnfr.201800373. Epub 2018 Aug 1. PMID: 29979820.
- Amézqueta S, Galán E, Fuguet E, Carrascal M, Abián J, Torres JL. Determination of D-fagomine in buckwheat and mulberry by cation exchange HPLC/ESI-Q-MS. Anal Bioanal Chem. 2012 Feb;402(5):1953-60. doi: 10.1007/s00216-011-5639-2. Epub 2011 Dec 30. PMID: 22207282.
- Davies SG, Fletcher AM, Kennedy MS, Roberts PM, Thomson JE. Asymmetric synthesis of D-fagomine and its diastereoisomers. Tetrahedron. 2018;74:7261-7271. doi: 10.1016/j.tet.2018.10.073.
- Zhang W, Mu W, Wu H, Liang Z. An overview of the biological production of 1-deoxynojirimycin: current status and future perspective. Appl Microbiol Biotechnol. 2019 Dec;103(23-24):9335-9344. doi: 10.1007/s00253-019-10191-9. Epub 2019 Nov 12. PMID: 31713668.
- Islam B, Khan SN, Haque I, Alam M, Mushfiq M, Khan AU. Novel anti-adherence activity of mulberry leaves: inhibition of Streptococcus mutans biofilm by 1-deoxynojirimycin isolated from Morus alba. J Antimicrob Chemother. 2008 Oct;62(4):751-7. doi: 10.1093/jac/dkn253. Epub 2008 Jun 18. PMID: 18565974.
- Kim J, Yun EY, Quan FS, Park SW, Goo TW. Central Administration of 1-Deoxynojirimycin Attenuates Hypothalamic Endoplasmic Reticulum Stress and Regulates Food Intake and Body Weight in Mice with High-Fat Diet-Induced Obesity. Evid Based Complement Alternat Med. 2017;2017:3607089. doi: 10.1155/2017/3607089. Epub 2017 Jul 17. PMID: 28798799; PMCID: PMC5535735.
- Chen W, Liang T, Zuo W, Wu X, Shen Z, Wang F, Li C, Zheng Y, Peng G. Neuroprotective effect of 1-Deoxynojirimycin on cognitive impairment, β-amyloid deposition, and neuroinflammation in the SAMP8 mice. Biomed Pharmacother. 2018 Oct;106:92-97. doi: 10.1016/j.biopha.2018.06.106. Epub 2018 Jun 26. PMID: 29957471.
- Kim JW, Kim SU, Lee HS, Kim I, Ahn MY, Ryu KS. Determination of 1-deoxynojirimycin in Morus alba L. leaves by derivatization with 9-fluorenylmethyl chloroformate followed by reversed-phase high-performance liquid chromatography. J Chromatogr A. 2003 Jun 20;1002(1-2):93-9. doi: 10.1016/s0021-9673(03)00728-3. PMID: 12885082.
- Xie H, Wu F, Yang Y, Liu J. [Determination of 1-deoxynojirimycin in Morus alba L. leaves using reversed-phase high performance liquid chromatography fluorescence detection with pre-column derivatization]. Se Pu. 2008 Sep;26(5):634-6. Chinese. PMID: 19160768.
- Liu C, Wang CH, Liu J, Xu L, Xiang W, Wang YC. Optimization of microwave-assisted technology for extracting 1-deoxynojirimycin from mulberry tea by response surface methodology. Food Sci Technol Res. 2014 May;20(3):599-605. doi: 10.3136/fstr.20.599.
- Bajpai S, Bhaskara Rao AV. Quantitative determination of 1-deoxynojirimycin in different mulberry varieties of India. J Pharm Phytochem. 2014;3(3):17-22.
- Wang Z, Dai F, Tang C, Xiao G, Li Z, Luo G. Quantitative determination of 1-deoxynojirimycin in 146 varieties of mulberry fruit. Int J Food Prop. 2021 July;24:1214-1221. doi: 10.1080/10942912.2021.1955923.
- Marchetti L, Saviane A, Montà AD, Paglia G, Pellati F, Benvenuti S, Bertelli D, Cappellozza S. Determination of 1-Deoxynojirimycin (1-DNJ) in Leaves of Italian or Italy-Adapted Cultivars of Mulberry (Morus sp.pl.) by HPLC-MS. Plants (Basel). 2021 Jul 28;10(8):1553. doi: 10.3390/plants10081553. PMID: 34451598; PMCID: PMC8402161.
- Tao Y, Chen X, Cai H, Li W, Cai B, Chai C, Di L, Shi L, Hu L. Untargeted serum metabolomics reveals Fu-Zhu-Jiang-Tang tablet and its optimal combination improve an impaired glucose and lipid metabolism in type II diabetic rats. J Chromatogr B Analyt Technol Biomed Life Sci. 2017 Jan 1;1040:222-232. doi: 10.1016/j.jchromb.2016.11.012. Epub 2016 Nov 13. PMID: 27866845.
- Walkowiak-Bródka A, Piekuś-Słomka N, Wnuk K, Kupcewicz B. Analysis of White Mulberry Leaves and Dietary Supplements, ATR-FTIR Combined with Chemometrics for the Rapid Determination of 1-Deoxynojirimycin. Nutrients. 2022 Dec 10;14(24):5276. doi: 10.3390/nu14245276. PMID: 36558434; PMCID: PMC9781008.
- Jeon YH, Choi SW. Isolation, Identification, and Quantification of Tyrosinase and α-Glucosidase Inhibitors from UVC-Irradiated Mulberry (Morus alba L.) Leaves. Prev Nutr Food Sci. 2019 Mar;24(1):84-94. doi: 10.3746/pnf.2019.24.1.84. Epub 2018 Nov 15. PMID: 31008101; PMCID: PMC6456241.
- Jiang YG, Wang CY, Jin C, Jia JQ, Guo X, Zhang GZ, Gui ZZ. Improved 1-Deoxynojirimycin (DNJ) production in mulberry leaves fermented by microorganism. Braz J Microbiol. 2014 Aug 29;45(2):721-9. doi: 10.1590/s1517-83822014000200048. PMID: 25242964; PMCID: PMC4166305.
- Jeong JH, Lee NK, Cho SH, Jeong DY, Jeong YS. Enhancement of 1-deoxynojirimycin content and α-glucosidase inhibitory activity in mulberry leaf using various fermenting microorganisms isolated from Korean traditional fermented food. Biotechnol Bioproc Eng. 2014;19(6):1114-1118. doi: 10.1007/s12257-014-0277-0.
- Wang D, Zhao L, Wang D, Liu J, Yu X, Wei Y, Ouyang Z. Transcriptome analysis and identification of key genes involved in 1-deoxynojirimycin biosynthesis of mulberry (Morus alba L.). PeerJ. 2018 Aug 23;6:e5443. doi: 10.7717/peerj.5443. PMID: 30155358; PMCID: PMC6109587.
- Straube H. Am-aza-ing anti-diabetic: Mulberry dehydrogenase MnGUTB1 contributes to the biosynthesis of 1-deoxynojirimycin. Plant Physiol. 2023 Mar 6:kiad140. doi: 10.1093/plphys/kiad140. Epub ahead of print. PMID: 36880315.
- Ren X, Xing Y, He L, Xiu Z, Yang L, Han A, Jia Q, Dong Y. Effect of 1-Deoxynojirimycin on insulin resistance in prediabetic mice based on next-generation sequencing and intestinal microbiota study. J Ethnopharmacol. 2022 May 10;289:115029. doi: 10.1016/j.jep.2022.115029. Epub 2022 Jan 22. PMID: 35077826.
- Hu TG, Wen P, Shen WZ, Liu F, Li Q, Li EN, Liao ST, Wu H, Zou YX. Effect of 1-Deoxynojirimycin Isolated from Mulberry Leaves on Glucose Metabolism and Gut Microbiota in a Streptozotocin-Induced Diabetic Mouse Model. J Nat Prod. 2019 Aug 23;82(8):2189-2200. doi: 10.1021/acs.jnatprod.9b00205. Epub 2019 Aug 8. PMID: 31393724.
- Núñez AC, Rentería ID, Villagómez MÁ, Enrique C, Sánchez M, Pulido SA, Rojas-Ronquillo R. White mulberry (Morus alba) foliage as a feeding supplement for growing calves. J Agric Sci Technol A. 2016 January;6(1):59-63. doi: 10.17265/2161-6256/2016.01.006.
- So-In C, Sunthamala N. The effects of mulberry (Morus alba Linn.) leaf supplementation on growth performance, blood parameter, and antioxidant status of broiler chickens under high stocking density. Vet World. 2022 Nov;15(11):2715-2724. doi: 10.14202/vetworld.2022.2715-2724. Epub 2022 Nov 28. PMID: 36590133; PMCID: PMC9798068.
- Yilmaz S, Ergün S, Yigit M, Yilmaz E, Ahmadifar E. Dietary supplementation of black mulberry (Morus nigra) syrup improves the growth performance, innate immune response, antioxidant status, gene expression responses, and disease resistance of Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 2020 Dec;107(Pt A):211-217. doi: 10.1016/j.fsi.2020.09.041. Epub 2020 Sep 29. PMID: 33007366.
- Mengistu G, Assefa G. Supplementation of Mulberry (Morus indica) and Vernonia (V. amygdalina) leaves as protein source on morphometric measurement, weight change, and carcass characteristics of sheep. CABI Agric Biosci. 2022;3:69. doi: 10.1186/s43170-022-00137-z.
- Zhao X, Yang R, Bi Y, Bilal M, Kuang Z, Iqbal HMN, Luo Q. Effects of Dietary Supplementation with Mulberry (Morus alba L.) Leaf Polysaccharides on Immune Parameters of Weanling Pigs. Animals (Basel). 2019 Dec 23;10(1):35. doi: 10.3390/ani10010035. PMID: 31878017; PMCID: PMC7022547.
- Khan K, Ullah I, Khan NA, Khan S. Evaluation of mulberry (Morus alba) leaves as a concentrate substitute in rabbit diet: Effect on growth performance and meat quality. Turk J Vet Anim Sci. 2020;44:1136-1141. doi: 10.3906/vet-2004-71.
- Can A, Kazankaya A, Orman E, Gundogdu M, Ercisli S, Choudhary R, Karunakaran R. Sustainable mulberry (Morus nigra L., Morus alba L. and Morus rubra L.) production in Eastern Turkey. Sustainability. 2021;13(24):13507. doi: 10.3390/su132413507.