Covid-19 Research

Review Article

OCLC Number/Unique Identifier:

Environmental Impacts of Emerging Micropollutants in the Environment: Chemical Properties, Behavior, Toxicology, Health Effects and Fate: A Review

Environmental Sciences    Start Submission

Hakime Mohammadzade, Halime Almasi*, Mojtaba kalantar and Sahand Jorfi

Volume5-Issue7
Dates: Received: 2024-06-19 | Accepted: 2024-07-03 | Published: 2024-07-08
Pages: 718-728

Abstract

In recent years, the contamination of the environment by emerging micro-pollutants has become a significant concern for various communities. Due to the recent identification of these substances as environmental pollutants, there is limited information available regarding their fate and toxicity in the environment. Consequently, the scientific community has extensively debated the spread and fate of these emerging environmental contaminants. Additionally, the continuous production of many of these substances in societies has left their potential impacts on humans and the environment unclear. At present, more information is needed about the current concentrations of emerging pollutants. This study provides an overview of the most significant micropollutants, focusing on the most significant emerging pollutants, assess their potential toxic effects on human health, and understand their behavior once they enter the environment.

FullText HTML FullText PDF DOI: 10.37871/jbres1947


Certificate of Publication




Copyright

© 2024 Mohammadzade H, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Mohammadzade H, Almasi H, kalantar M, Jorfi S. Environmental Impacts of Emerging Micropollutants in the Environment: Chemical Properties, Behavior, Toxicology, Health Effects and Fate: A Review. J Biomed Res Environ Sci. 2024 Jul 08; 5(7): 718-728. doi: 10.37871/jbres1947, Article ID: JBRES1947, Available at: https://www.jelsciences.com/articles/jbres1947.pdf


Subject area(s)

References


  1. Rizzo L, Malato S, Antakyali D, G. Beretsou V, B. Đolić M, Gernjak W, Heath E, Ivancev-Tumbas I, Karaolia P, R. Lado Ribeiro A, Mascolo G, S. McArdell C, Schaar H, M.T. Silva A, Fatta-Kassinos D. Consolidated vs. new advanced treatment methods for the removal of contaminants of emerging concern from urban wastewater. Science of the Total Environment. 2019;655:986-1008. doi: 10.1016/j.scitotenv.2018.11.265.
  2. Rede D, Teixeira I, Delerue-Matos C, Fernandes VC. Assessing emerging and priority micropollutants in sewage sludge: environmental insights and analytical approaches. Environ Sci Pollut Res Int. 2024 Jan;31(2):3152-3168. doi: 10.1007/s11356-023-30963-1. Epub 2023 Dec 12. PMID: 38085484; PMCID: PMC10791843.
  3. Arslan M, Ullah I, Müller JA, Shahid N. Organic micropollutants in the environment: Ecotoxicity potential and methods for remediation. Enhancing cleanup of environmental pollutants. 2017; 65-99. doi: 10.1007/978-3-319-55426-6.
  4. Das S, Ray NM, Wan J, Khan A, Chakraborty T, Ray MB. Micropollutants in wastewater: Fate and removal processes. Physico-chemical wastewater treatment and resource recovery. 2017;3:75-117. doi: 10.5772/65644.
  5. Rogowska J, Cieszynska-Semenowicz M, Ratajczyk W, Wolska L. Micropollutants in treated wastewater. Ambio. 2020 Feb;49(2):487-503. doi: 10.1007/s13280-019-01219-5. Epub 2019 Jul 10. PMID: 31292910; PMCID: PMC6965340.
  6. Brausch JM, Rand GM. A review of personal care products in the aquatic environment: environmental concentrations and toxicity. Chemosphere. 2011 Mar;82(11):1518-32. doi: 10.1016/j.chemosphere.2010.11.018. Epub 2010 Dec 23. PMID: 21185057.
  7. Rajasekar M, Mary J, Sivakumar M, Selvam M. Recent developments in sunscreens based on chromophore compounds and nanoparticles. RSC advances. 2024;14(4):2529-2563. doi: 10.1039/D3RA08178H.
  8. Gavrilescu M, Demnerová K, Aamand J, Agathos S, Fava F. Emerging pollutants in the environment: present and future challenges in biomonitoring, ecological risks and bioremediation. N Biotechnol. 2015 Jan 25;32(1):147-56. doi: 10.1016/j.nbt.2014.01.001. Epub 2014 Jan 21. PMID: 24462777.
  9. Encarnação T, Pais AA, Campos MG, Burrows HD. Endocrine disrupting chemicals: Impact on human health, wildlife and the environment. Sci Prog. 2019 Mar;102(1):3-42. doi: 10.1177/0036850419826802. Epub 2019 Jan 1. PMID: 31829784; PMCID: PMC10424550.
  10. Adegoke EO, Rahman MS, Park YJ, Kim YJ, Pang MG. Endocrine-Disrupting Chemicals and Infectious Diseases: From Endocrine Disruption to Immunosuppression. Int J Mol Sci. 2021 Apr 11;22(8):3939. doi: 10.3390/ijms22083939. PMID: 33920428; PMCID: PMC8069594.
  11. Stiefel C, Stintzing F. Endocrine-active and endocrine-disrupting compounds in food-occurrence, formation and relevance. NFS Journal. 2023;31:57-92. doi: 10.1016/j.nfs.2023.03.004.
  12. Carranza Diaz O. Behavior of selected organic micropollutants in horizontal subsurface-flow constructed wetlands operating at high organic load. 2015.
  13. Newbold RR, Padilla-Banks E, Jefferson WN. Environmental estrogens and obesity. Mol Cell Endocrinol. 2009 May 25;304(1-2):84-9. doi: 10.1016/j.mce.2009.02.024. Epub 2009 Mar 9. PMID: 19433252; PMCID: PMC2682588.
  14. Chavoshani A, Hashemi M, Amin MM, Ameta SC. Chapter 2 - Pharmaceuticals as emerging micropollutants in aquatic environments, in Micropollutants and Challenges. A. Chavoshani A, Hashemi M, Amin MM, Ameta SC, editors. Elsevier; 2020. p.35-90.
  15. State of the science of endocrine disrupting chemicals 2012: Summary for decision-makers. WHO; 2012.
  16. Shen L, Wania F. Compilation, evaluation, and selection of physical− chemical property data for organochlorine pesticides. Journal of Chemical & Engineering Data. 2005;50(3):742-768. doi: 10.1021/je049693f.
  17. Włodarczyk-Makuła M. Selected organic micropollutants in the aquatic environment. Desalination and Water Treatment. 2024;317:100061. doi: 10.1016/j.dwt.2024.100061.
  18. Khawar MI, Mahmood A, Nabi D. Exploring the role of octanol-water partition coefficient and Henry's law constant in predicting the lipid-water partition coefficients of organic chemicals. Sci Rep. 2022 Sep 2;12(1):14936. doi: 10.1038/s41598-022-19452-6. PMID: 36056200; PMCID: PMC9440013.
  19. Metcalfe CD, Bayen S, Desrosiers M, Muñoz G, Sauvé S, Yargeau V. An introduction to the sources, fate, occurrence and effects of endocrine disrupting chemicals released into the environment. Environ Res. 2022 May 1;207:112658. doi: 10.1016/j.envres.2021.112658. Epub 2022 Jan 4. PMID: 34990614.
  20. Mungai TM, Wang J. Occurrence and Toxicological Risk Evaluation of Organochlorine Pesticides from Suburban Soils of Kenya. Int J Environ Res Public Health. 2019 Aug 15;16(16):2937. doi: 10.3390/ijerph16162937. PMID: 31443302; PMCID: PMC6719993.
  21. Nakata H, Kawazoe M, Arizono K, Abe S, Kitano T, Shimada H, Li W, Ding X. Organochlorine pesticides and polychlorinated biphenyl residues in foodstuffs and human tissues from china: status of contamination, historical trend, and human dietary exposure. Arch Environ Contam Toxicol. 2002 Nov;43(4):473-80. doi: 10.1007/s00244-002-1254-8. PMID: 12399919.
  22. Saadati N, Abdullah MP, Zakaria Z, Rezayi M, Hosseinizare N. Distribution and fate of HCH isomers and DDT metabolites in a tropical environment-case study Cameron Highlands-Malaysia. Chem Cent J. 2012 Nov 7;6(1):130. doi: 10.1186/1752-153X-6-130. PMID: 23130650; PMCID: PMC3531265.
  23. Ma ECCC. Guide for physicochemical and toxicological characterization of sediments. Minist`ere du D´eveloppement durable, de l’Environnement et de la Lutte contre les changements climatiques and Environment and Climate Change Canada. 2016;59.
  24. Reddy AVB, Moniruzzaman M, Aminabhavi TM. Polychlorinated biphenyls (PCBs) in the environment: Recent updates on sampling, pretreatment, cleanup technologies and their analysis. Chemical Engineering Journal. 2019;358:1186-1207. doi: 10.1016/j.cej.2018.09.205.
  25. Gore AC, Krishnan K, Reilly MP. Endocrine-disrupting chemicals: Effects on neuroendocrine systems and the neurobiology of social behavior. Horm Behav. 2019 May;111:7-22. doi: 10.1016/j.yhbeh.2018.11.006. Epub 2018 Dec 4. PMID: 30476496; PMCID: PMC6527472.
  26. Zhang W, Sargis RM, Volden PA, Carmean CM, Sun XJ, Brady MJ. PCB 126 and other dioxin-like PCBs specifically suppress hepatic PEPCK expression via the aryl hydrocarbon receptor. PLoS One. 2012;7(5):e37103. doi: 10.1371/journal.pone.0037103. Epub 2012 May 16. PMID: 22615911; PMCID: PMC3353882.
  27. Ålander J. Concentrations of brominated flame retardants (HBB, PBEB, BTBPE, DBDPE, PBDEs and HBCD) in blood serum from first-time mothers in Uppsala 1996-2017. Livsmedelsverket. 2019.
  28. Zuiderveen EAR, Slootweg JC, de Boer J. Novel brominated flame retardants - A review of their occurrence in indoor air, dust, consumer goods and food. Chemosphere. 2020 Sep;255:126816. doi: 10.1016/j.chemosphere.2020.126816. Epub 2020 Apr 22. PMID: 32417508.
  29. Pignotti E. Contaminants of emerging concern: Occurrence and distribution in aquatic environments. 2018.
  30. Zhu Z, Zuo Y, Bisphenol A and other alkylphenols in the environment-occurrence, fate, health effects and analytical techniques. Adv Environ Res. 2013;2(3):179-202. doi: 10.12989/aer.2013.2.3.179.
  31. Bang DY, Kyung M, Kim MJ, Jung BY, Cho MC, Choi SM, Kim YW, Lim SK, Lim DS, Won AJ, Kwack SJ, Lee YK, Kim HS, Lee BM. Human risk assessment of endocrine‐disrupting chemicals derived from plastic food containers. Comprehensive Reviews in Food Science and Food Safety. 2012;11(5):453-470. doi: 10.1111/j.1541-4337.2012.00197.x.
  32. Beausoleil C, Emond C, Cravedi JP, Antignac JP, Applanat M, Appenzeller BR, Beaudouin R, Belzunces LP, Canivenc-Lavier MC, Chevalier N, Chevrier C, Elefant E, Eustache F, Habert R, Kolf-Clauw M, Le Magueresse-Battistoni B, Mhaouty-Kodja S, Minier C, Multigner L, Schroeder H, Thonneau P, Viguié C, Pouzaud F, Ormsby JN, Rousselle C, Verines-Jouin L, Pasquier E, Michel C. Regulatory identification of BPA as an endocrine disruptor: Context and methodology. Mol Cell Endocrinol. 2018 Nov 5;475:4-9. doi: 10.1016/j.mce.2018.02.001. Epub 2018 Feb 6. PMID: 29426018.
  33. Careghini A, Mastorgio AF, Saponaro S, Sezenna E. Bisphenol A, nonylphenols, benzophenones, and benzotriazoles in soils, groundwater, surface water, sediments, and food: a review. Environ Sci Pollut Res Int. 2015 Apr;22(8):5711-41. doi: 10.1007/s11356-014-3974-5. Epub 2014 Dec 30. PMID: 25548011; PMCID: PMC4381092.
  34. Diao P, Chen Q, Wang R, Sun D, Cai Z, Wu H, Duan S. Phenolic endocrine-disrupting compounds in the Pearl River Estuary: Occurrence, bioaccumulation and risk assessment. Sci Total Environ. 2017 Apr 15;584-585:1100-1107. doi: 10.1016/j.scitotenv.2017.01.169. Epub 2017 Feb 6. PMID: 28185731.
  35. Soto AM, Justicia H, Wray JW, Sonnenschein C. p-Nonyl-phenol: an estrogenic xenobiotic released from "modified" polystyrene. Environ Health Perspect. 1991 May;92:167-73. doi: 10.1289/ehp.9192167. PMID: 1935846; PMCID: PMC1519400.
  36. Squadrone S, Ciccotelli V, Favaro L, Scanzio T, Prearo M, Abete MC. Fish consumption as a source of human exposure to perfluorinated alkyl substances in Italy: analysis of two edible fish from Lake Maggiore. Chemosphere. 2014 Nov;114:181-6. doi: 10.1016/j.chemosphere.2014.04.085. Epub 2014 May 17. PMID: 25113200.
  37. Gusmaroli L. Analysis, occurrence, fate and behaviour of emerging micropollutants in wastewater and the receiving environment. Universitat de Girona. 2020.
  38. Bakker J, Bakker J, Hakkert BC, Hessel EVS, Luit RJ, Piersma AH, Sijm DTHM, Rietveld AG, van Broekhuizen FA, van Loveren H, Verhoeven JK. Bisphenol A: part 2. Recommendations for risk management. 2016.
  39. de Solla SR, De Silva AO, Letcher RJ. Highly elevated levels of perfluorooctane sulfonate and other perfluorinated acids found in biota and surface water downstream of an international airport, Hamilton, Ontario, Canada. Environ Int. 2012 Feb;39(1):19-26. doi: 10.1016/j.envint.2011.09.011. Epub 2011 Oct 29. PMID: 22208739.
  40. Onghena M, Moliner-Martinez Y, Picó Y, Campíns-Falcó P, Barceló D. Analysis of 18 perfluorinated compounds in river waters: comparison of high performance liquid chromatography-tandem mass spectrometry, ultra-high-performance liquid chromatography-tandem mass spectrometry and capillary liquid chromatography-mass spectrometry. J Chromatogr A. 2012 Jun 29;1244:88-97. doi: 10.1016/j.chroma.2012.04.056. Epub 2012 May 8. PMID: 22633866.
  41. Llorca M, Farré M, Tavano MS, Alonso B, Koremblit G, Barceló D. Fate of a broad spectrum of perfluorinated compounds in soils and biota from Tierra del Fuego and Antarctica. Environ Pollut. 2012 Apr;163:158-66. doi: 10.1016/j.envpol.2011.10.027. Epub 2012 Jan 12. PMID: 22325444..
  42. European Food Safety Authority (EFSA). Perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and their salts Scientific Opinion of the Panel on Contaminants in the Food chain. EFSA J. 2008 Jul 21;6(7):653. doi: 10.2903/j.efsa.2008.653. PMID: 37213838; PMCID: PMC10193653.
  43. Giesy JP, Naile JE, Khim JS, Jones PD, Newsted JL. Aquatic toxicology of perfluorinated chemicals. Rev Environ Contam Toxicol. 2010;202:1-52. doi: 10.1007/978-1-4419-1157-5_1. PMID: 19898760.
  44. Ahrens L. Polyfluoroalkyl compounds in the aquatic environment: a review of their occurrence and fate. Journal of Environmental Monitoring. 2011;13(1):20-31. doi: 10.1039/c0em00373e.
  45. Ferrey M, Wilson JT, Adair C, Su C, Fine D, Liu X, Washington JW. Behavior and fate of PFOA and PFOS in sandy aquifer sediment. Groundwater Monitoring & Remediation. 2012;32(4):63-71. doi: 10.1111/j.1745-6592.2012.01395.x.
  46. Conder JM, Hoke RA, De Wolf W, Russell MH, Buck RC. Are PFCAs bioaccumulative? A critical review and comparison with regulatory criteria and persistent lipophilic compounds. Environ Sci Technol. 2008 Feb 15;42(4):995-1003. doi: 10.1021/es070895g. PMID: 18351063.
  47. Olsen GW, Mair DC, Lange CC, Harrington LM, Church TR, Goldberg CL, Herron RM, Hanna H, Nobiletti JB, Rios JA, Reagen WK, Ley CA. Per- and polyfluoroalkyl substances (PFAS) in American Red Cross adult blood donors, 2000-2015. Environ Res. 2017 Aug;157:87-95. doi: 10.1016/j.envres.2017.05.013. Epub 2017 May 18. PMID: 28528142.
  48. Higgins CP, Luthy RG. Sorption of perfluorinated surfactants on sediments. Environ Sci Technol. 2006 Dec 1;40(23):7251-6. doi: 10.1021/es061000n. PMID: 17180974.
  49. Pancras T. Environmental fate and effects of poly and Perfluoroalkyl Substances (PFAS). 2016.
  50. Schwarzenbach RP, Gschwend PM, Imboden DM. Environmental organic chemistry. 2016: John Wiley & Sons.
  51. Boas M, Feldt-Rasmussen U, Main KM. Thyroid effects of endocrine disrupting chemicals. Mol Cell Endocrinol. 2012 May 22;355(2):240-8. doi: 10.1016/j.mce.2011.09.005. Epub 2011 Sep 10. PMID: 21939731.
  52. Pal A, Gin KY, Lin AY, Reinhard M. Impacts of emerging organic contaminants on freshwater resources: review of recent occurrences, sources, fate and effects. Sci Total Environ. 2010 Nov 15;408(24):6062-9. doi: 10.1016/j.scitotenv.2010.09.026. Epub 2010 Oct 8. PMID: 20934204..
  53. Luckenbach T, Epel D. Nitromusk and polycyclic musk compounds as long-term inhibitors of cellular xenobiotic defense systems mediated by multidrug transporters. Environ Health Perspect. 2005 Jan;113(1):17-24. doi: 10.1289/ehp.7301. PMID: 15626642; PMCID: PMC1253704.
  54. Halden RU. On the need and speed of regulating triclosan and triclocarban in the United States. Environ Sci Technol. 2014 Apr 1;48(7):3603-11. doi: 10.1021/es500495p. Epub 2014 Mar 14. PMID: 24588513; PMCID: PMC3974611.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search