Covid-19 Research

Research Article

OCLC Number/Unique Identifier:

Noninvasive Vital Signs Monitoring in the Neonatal Intensive Care Unit

Medicine Group    Start Submission

Chengyang Qian, Junye Li and Michelle Khine*

Volume5-Issue7
Dates: Received: 2024-06-29 | Accepted: 2024-07-19 | Published: 2024-07-20
Pages: 797-816

Abstract

Patients in the Neonatal Intensive Care Unit (NICU) have high mortality and morbidity rates due to their low birth weight or being preterm. Due to their vulnerability, neonates require close monitoring so that timely treatment can be performed. However, current, state-of-the-art technologies for continuous vital sign monitoring in the NICU are not optimal due to the use of wires and adhesives. Wires impede the natural movement of neonates, disallow intimate kangaroo care, and impose inconvenience on daily caretaking. The use of adhesives can damage neonates’ skin during removal. To address these problems, many wearable systems or contactless setups have been proposed for their respective vital signs. In this review, an overview of these newer technologies, along with their working principles, is discussed.

FullText HTML FullText PDF DOI: 10.37871/jbres1958


Certificate of Publication




Copyright

© 2024 Qian C, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Qian C, Li J, Khine M. Noninvasive Vital Signs Monitoring in the Neonatal Intensive Care Unit. J Biomed Res Environ Sci. 2024 Jul 20; 5(7): 797-816. doi: 10.37871/jbres1958, Article ID: JBRES1958, Available at: https://www.jelsciences.com/ articles/jbres1958.pdf


Subject area(s)

References


  1. Lawn JE, Blencowe H, Oza S, You D, Lee AC, Waiswa P, Lalli M, Bhutta Z, Barros AJ, Christian P, Mathers C, Cousens SN; Lancet Every Newborn Study Group. Every Newborn: progress, priorities, and potential beyond survival. Lancet. 2014 Jul 12;384(9938):189-205. doi: 10.1016/S0140-6736(14)60496-7. Epub 2014 May 19. Erratum in: Lancet. 2014 Jul 12;384(9938):132. PMID: 24853593.
  2. Suárez-Idueta L, Blencowe H, Okwaraji YB, Yargawa J, Bradley E, Gordon A, Flenady V, Paixao ES, Barreto ML, Lisonkova S, Wen Q, Velebil P, Jírová J, Horváth-Puhó E, Sørensen HT, Sakkeus L, Abuladze L, Yunis KA, Al Bizri A, Barranco A, Broeders L, van Dijk AE, Alyafei F, Olukade TO, Razaz N, Söderling J, Smith LK, Draper ES, Lowry E, Rowland N, Wood R, Monteath K, Pereyra I, Pravia G, Ohuma EO, Lawn JE; National Vulnerable Newborn Mortality Collaborative Group and Vulnerable Newborn Measurement Core Group. Neonatal mortality risk for vulnerable newborn types in 15 countries using 125.5 million nationwide birth outcome records, 2000-2020. BJOG. 2023 May 8. doi: 10.1111/1471-0528.17506. Epub ahead of print. PMID: 37156244.
  3. Hsu JF, Chang YF, Cheng HJ, Yang C, Lin CY, Chu SM, Huang HR, Chiang MC, Wang HC, Tsai MH. Machine Learning Approaches to Predict In-Hospital Mortality among Neonates with Clinically Suspected Sepsis in the Neonatal Intensive Care Unit. J Pers Med. 2021 Jul 22;11(8):695. doi: 10.3390/jpm11080695. PMID: 34442338; PMCID: PMC8400295.
  4. Dol J, Hughes B, Bonet M, Dorey R, Dorling J, Grant A, Langlois EV, Monaghan J, Ollivier R, Parker R, Roos N, Scott H, Shin HD, Curran J. Timing of neonatal mortality and severe morbidity during the postnatal period: a systematic review. JBI Evid Synth. 2023 Jan 1;21(1):98-199. doi: 10.11124/JBIES-21-00479. PMID: 36300916; PMCID: PMC9794155.
  5. Khanam FT, Perera AG, Al-Naji A, Gibson K, Chahl J. Non-Contact Automatic Vital Signs Monitoring of Infants in a Neonatal Intensive Care Unit Based on Neural Networks. J Imaging. 2021 Jul 23;7(8):122. doi: 10.3390/jimaging7080122. PMID: 34460758; PMCID: PMC8404938.
  6. Khanam FT, Chahl LA, Chahl JS, Al-Naji A, Perera AG, Wang D, Lee YH, Ogunwa TT, Teague S, Nguyen TXB, McIntyre TD, Pegoli SP, Tao Y, McGuire JL, Huynh J, Chahl J. Noncontact Sensing of Contagion. J Imaging. 2021 Feb 5;7(2):28. doi: 10.3390/jimaging7020028. PMID: 34460627; PMCID: PMC8321279.
  7. Khanam FTZ, Al-Naji A, Chahl J. Remote monitoring of vital signs in diverse non-clinical and clinical scenarios using computer vision systems: A review. Applied Sciences. 2019;9(20):4474. doi: 10.3390/app9204474.
  8. Cretikos MA, Bellomo R, Hillman K, Chen J, Finfer S, Flabouris A. Respiratory rate: the neglected vital sign. Med J Aust. 2008 Jun 2;188(11):657-9. doi: 10.5694/j.1326-5377.2008.tb01825.x. PMID: 18513176.
  9. Bonner O, Beardsall K, Crilly N, Lasenby J. 'There were more wires than him': the potential for wireless patient monitoring in neonatal intensive care. BMJ Innov. 2017 Feb;3(1):12-18. doi: 10.1136/bmjinnov-2016-000145. Epub 2017 Jan 4. PMID: 28250963; PMCID: PMC5293857.
  10. Kwak SS, Yoo S, Avila R, Chung HU, Jeong H, Liu C, Vogl JL, Kim J, Yoon HJ, Park Y, Ryu H, Lee G, Kim J, Koo J, Oh YS, Kim S, Xu S, Zhao Z, Xie Z, Huang Y, Rogers JA. Skin-Integrated Devices with Soft, Holey Architectures for Wireless Physiological Monitoring, With Applications in the Neonatal Intensive Care Unit. Adv Mater. 2021 Nov;33(44):e2103974. doi: 10.1002/adma.202103974. Epub 2021 Sep 12. PMID: 34510572.
  11. Lee JH. Catheter-related bloodstream infections in neonatal intensive care units. Korean J Pediatr. 2011 Sep;54(9):363-7. doi: 10.3345/kjp.2011.54.9.363. Epub 2011 Sep 30. PMID: 22232628; PMCID: PMC3250601.
  12. Lund C. Medical adhesives in the NICU. Newborn and Infant Nursing Reviews. 2014;14(4):160-165. doi: 10.1053/j.nainr.2014.10.001.
  13. Ates HC, Nguyen PQ, Gonzalez-Macia L, Morales-Narváez E, Güder F, Collins JJ, Dincer C. End-to-end design of wearable sensors. Nat Rev Mater. 2022;7(11):887-907. doi: 10.1038/s41578-022-00460-x. Epub 2022 Jul 22. PMID: 35910814; PMCID: PMC9306444.
  14. Roy S, Arshad F, Eissa S, Safavieh M, Alattas SG, Ahmed MU, Zourob M. Recent developments towards portable point-of-care diagnostic devices for pathogen detection. Sensors and Diagnostics. Royal Society of Chemistry. 2022;1(1):87-105. doi: 10.1039/d1sd00017a.
  15. Heikenfeld J, Jajack A, Rogers J, Gutruf P, Tian L, Pan T, Li R, Khine M, Kim J, Wang J, Kim J. Wearable sensors: modalities, challenges, and prospects. Lab Chip. 2018 Jan 16;18(2):217-248. doi: 10.1039/c7lc00914c. PMID: 29182185; PMCID: PMC5771841.
  16. Kenry, Yeo JC, Lim CT. Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications. Microsyst Nanoeng. 2016 Sep 26;2:16043. doi: 10.1038/micronano.2016.43. PMID: 31057833; PMCID: PMC6444731.
  17. Xue Y, Zhang J, Chen X, Zhang J, Chen G, Zhang K, Lin J, Guo C, Liu J. Trigger-detachable hydrogel adhesives for bioelectronic interfaces. Adv Funct Mater. 2021;31(47). doi: 10.1002/adfm.202106446.
  18. Chung HU, Kim BH, Lee JY, Lee J, Xie Z, Ibler EM, Lee K, Banks A, Jeong JY, Kim J, Ogle C, Grande D, Yu Y, Jang H, Assem P, Ryu D, Kwak JW, Namkoong M, Park JB, Lee Y, Kim DH, Ryu A, Jeong J, You K, Ji B, Liu Z, Huo Q, Feng X, Deng Y, Xu Y, Jang KI, Kim J, Zhang Y, Ghaffari R, Rand CM, Schau M, Hamvas A, Weese-Mayer DE, Huang Y, Lee SM, Lee CH, Shanbhag NR, Paller AS, Xu S, Rogers JA. Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. Science. 2019 Mar 1;363(6430):eaau0780. doi: 10.1126/science.aau0780. PMID: 30819934; PMCID: PMC6510306.
  19. Dong S, Wen L, Li Y, Lu J, Zhang Z, Yuan C, Gu C. Remote respiratory variables tracking with biomedical radar-based iot system during sleep. IEEE Internet Things J. 2024;99:1-1. doi: 10.1109/JIOT.2024.3367932.
  20. Nakajim K, Matsumoto Y, Tamura T. Development of real-time image sequence analysis for evaluating posture change and respiratory rate of a subject in bed. Physiol Meas. 2001 Aug;22(3):N21-8. doi: 10.1088/0967-3334/22/3/401. PMID: 11556682.
  21. Abbas AK, Heimann K, Jergus K, Orlikowsky T, Leonhardt S. Neonatal non-contact respiratory monitoring based on real-time infrared thermography. Biomed Eng Online. 2011 Oct 20;10:93. doi: 10.1186/1475-925X-10-93. PMID: 22243660; PMCID: PMC3258209.
  22. Kaplan Berkaya S, Uysal AK, Sora Gunal E, Ergin S, Gunal S, Gulmezoglu MB. A survey on ECG analysis. Biomed Signal Process Control. 2018;43:216-235. doi: 10.1016/j.bspc.2018.03.003.
  23. Stramba-Badiale M, Karnad DR, Goulene KM, Panicker GK, Dagradi F, Spazzolini C, Kothari S, Lokhandwala YY, Schwartz PJ. For neonatal ECG screening there is no reason to relinquish old Bazett's correction. Eur Heart J. 2018 Aug 14;39(31):2888-2895. doi: 10.1093/eurheartj/ehy284. PMID: 29860404.
  24. Schwartz PJ, Garson A Jr, Paul T, Stramba-Badiale M, Vetter VL, Wren C; European Society of Cardiology. Guidelines for the interpretation of the neonatal electrocardiogram. A task force of the European Society of Cardiology. Eur Heart J. 2002 Sep;23(17):1329-44. doi: 10.1053/euhj.2002.3274. PMID: 12269267.
  25. Hoffmann KP, Ruff R. Flexible dry surface-electrodes for ECG long-term monitoring. Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:5740-3. doi: 10.1109/IEMBS.2007.4353650. PMID: 18003316.
  26. Kim YS, Mahmood M, Lee Y, Kim NK, Kwon S, Herbert R, Kim D, Cho HC, Yeo WH. All-in-One, Wireless, Stretchable Hybrid Electronics for Smart, Connected, and Ambulatory Physiological Monitoring. Adv Sci (Weinh). 2019 Jul 24;6(17):1900939. doi: 10.1002/advs.201900939. PMID: 31508289; PMCID: PMC6724359.
  27. Chung HU, Rwei AY, Hourlier-Fargette A, Xu S, Lee K, Dunne EC, Xie Z, Liu C, Carlini A, Kim DH, Ryu D, Kulikova E, Cao J, Odland IC, Fields KB, Hopkins B, Banks A, Ogle C, Grande D, Park JB, Kim J, Irie M, Jang H, Lee J, Park Y, Kim J, Jo HH, Hahm H, Avila R, Xu Y, Namkoong M, Kwak JW, Suen E, Paulus MA, Kim RJ, Parsons BV, Human KA, Kim SS, Patel M, Reuther W, Kim HS, Lee SH, Leedle JD, Yun Y, Rigali S, Son T, Jung I, Arafa H, Soundararajan VR, Ollech A, Shukla A, Bradley A, Schau M, Rand CM, Marsillio LE, Harris ZL, Huang Y, Hamvas A, Paller AS, Weese-Mayer DE, Lee JY, Rogers JA. Skin-interfaced biosensors for advanced wireless physiological monitoring in neonatal and pediatric intensive-care units. Nat Med. 2020 Mar;26(3):418-429. doi: 10.1038/s41591-020-0792-9. Epub 2020 Mar 11. PMID: 32161411; PMCID: PMC7315772.
  28. Yapici MK, Alkhidir T, Samad YA, Liao K. Graphene-clad textile electrodes for electrocardiogram monitoring. Sens Actuators B Chem. 2015;221:1469-1474. doi: 10.1016/j.snb.2015.07.111.
  29. Chen W, Oetomo SB, Feijs L, Bouwstra S, Ayoola I, Dols S. Design of an integrated sensor platform for vital sign monitoring of newborn infants at Neonatal Intensive Care Units. J Healthc Eng. 2010;1(4):535-554. doi: 10.1260/2040-2295.1.4.535.
  30. Tang Y, Chang R, Zhang L, Yan F, Ma H, Bu X. Electrode humidification design for artifact reduction in capacitive ECG measurements. Sensors. 2020;20(12):1-17. doi: 10.3390/s20123449.
  31. Ueno A, Akabane Y, Kato T, Hoshino H, Kataoka S, Ishiyama Y. Capacitive sensing of electrocardiographic potential through cloth from the dorsal surface of the body in a supine position: a preliminary study. IEEE Trans Biomed Eng. 2007 Apr;54(4):759-66. doi: 10.1109/TBME.2006.889201. PMID: 17405385.
  32. Lee SM, Sim KS, Kim KK, Lim YG, Park KS. Thin and flexible active electrodes with shield for capacitive electrocardiogram measurement. Med Biol Eng Comput. 2010 May;48(5):447-57. doi: 10.1007/s11517-010-0597-y. Epub 2010 Apr 2. PMID: 20361268.
  33. Su PC, Hsueh YH, Ke MT, Chen JJ, Lai PC. Noncontact ECG Monitoring by Capacitive Coupling of Textiles in a Chair. J Healthc Eng. 2021 Jun 16;2021:6698567. doi: 10.1155/2021/6698567. PMID: 34221299; PMCID: PMC8225447.
  34. Kato T, Ueno A, Kataoka S, Hoshino H, Ishiyama Y. An application of capacitive electrode for detecting electrocardiogram of neonates and infants. Conf Proc IEEE Eng Med Biol Soc. 2006;2006:916-9. doi: 10.1109/IEMBS.2006.260362. PMID: 17946008.
  35. Swarup S, Makaryus AN. Digital stethoscope: technology update. Med Devices (Auckl). 2018 Jan 4;11:29-36. doi: 10.2147/MDER.S135882. PMID: 29379321; PMCID: PMC5757962.
  36. Balogh ÁT, Kovács F. Application of phonocardiography on preterm infants with patent ductus arteriosus. Biomed Signal Process Control. 2011;6(4):337-345. doi: 10.1016/j.bspc.2011.05.009.
  37. Voogdt KG, Morrison AC, Wood FE, van Elburg RM, Wyllie JP. A randomised, simulated study assessing auscultation of heart rate at birth. Resuscitation. 2010 Aug;81(8):1000-3. doi: 10.1016/j.resuscitation.2010.03.021. Epub 2010 May 18. PMID: 20483522.
  38. Behere S, Baffa JM, Penfil S, Slamon N. Real-World Evaluation of the Eko Electronic Teleauscultation System. Pediatr Cardiol. 2019 Jan;40(1):154-160. doi: 10.1007/s00246-018-1972-y. Epub 2018 Aug 31. PMID: 30171267.
  39. Chong SW, Peyton PJ. A meta-analysis of the accuracy and precision of the ultrasonic cardiac output monitor (USCOM). Anaesthesia. 2012 Nov;67(11):1266-71. doi: 10.1111/j.1365-2044.2012.07311.x. Epub 2012 Aug 29. PMID: 22928650.
  40. Blohm ME, Obrecht D, Hartwich J, Mueller GC, Kersten JF, Weil J, Singer D. Impedance cardiography (electrical velocimetry) and transthoracic echocardiography for non-invasive cardiac output monitoring in pediatric intensive care patients: a prospective single-center observational study. Crit Care. 2014 Nov 19;18(6):603. doi: 10.1186/s13054-014-0603-0. PMID: 25407329; PMCID: PMC4261789.
  41. Freidl T, Baik N, Pichler G, Schwaberger B, Zingerle B, Avian A, Urlesberger B. Haemodynamic Transition after Birth: A New Tool for Non-Invasive Cardiac Output Monitoring. Neonatology. 2017;111(1):55-60. doi: 10.1159/000446468. Epub 2016 Aug 17. PMID: 27529179.
  42. Marchionni P, Scalise L, Ercoli I, Tomasini EP. An optical measurement method for the simultaneous assessment of respiration and heart rates in preterm infants. Rev Sci Instrum. 2013 Dec;84(12):121705. doi: 10.1063/1.4845635. PMID: 24387410.
  43. Ranjan AK, Gulati A. Controls of Central and Peripheral Blood Pressure and Hemorrhagic/Hypovolemic Shock. J Clin Med. 2023 Jan 31;12(3):1108. doi: 10.3390/jcm12031108. PMID: 36769755; PMCID: PMC9917827.
  44. Baker S, Yogavijayan T, Kandasamy Y. Towards Non-Invasive and Continuous Blood Pressure Monitoring in Neonatal Intensive Care Using Artificial Intelligence: A Narrative Review. Healthcare (Basel). 2023 Dec 6;11(24):3107. doi: 10.3390/healthcare11243107. PMID: 38131997; PMCID: PMC10743031.
  45. Fanaroff JM, Fanaroff AA. Blood pressure disorders in the neonate: hypotension and hypertension. Semin Fetal Neonatal Med. 2006 Jun;11(3):174-81. doi: 10.1016/j.siny.2006.01.002. Epub 2006 Mar 3. PMID: 16516569.
  46. Dasgupta SJ, Gill AB. Hypotension in the very low birthweight infant: the old, the new, and the uncertain. Arch Dis Child Fetal Neonatal Ed. 2003 Nov;88(6):F450-4. doi: 10.1136/fn.88.6.f450. PMID: 14602688; PMCID: PMC1763241.
  47. Nakamura M, Umehara N, Ishii K, Sasahara J, Kiyoshi K, Ozawa K, Tanaka K, Tanemoto T, Ichizuka K, Hasegawa J, Ishikawa H, Murakoshi T, Sago H. A poor long-term neurological prognosis is associated with abnormal cord insertion in severe growth-restricted fetuses. J Perinat Med. 2018 Nov 27;46(9):1040-1047. doi: 10.1515/jpm-2017-0240. PMID: 29267174.
  48. Kent AL, Kecskes Z, Shadbolt B, Falk MC. Normative blood pressure data in the early neonatal period. Pediatr Nephrol. 2007 Sep;22(9):1335-41. doi: 10.1007/s00467-007-0480-8. Epub 2007 Apr 17. PMID: 17437131.
  49. Giri P, Roth P. Neonatal Hypertension. Pediatr Rev. 2020 Jun;41(6):307-311. doi: 10.1542/pir.2019-0159. PMID: 32482697.
  50. Harer MW, Kent AL. Neonatal hypertension: an educational review. Pediatr Nephrol. 2019 Jun;34(6):1009-1018. doi: 10.1007/s00467-018-3996-1. Epub 2018 Jul 5. PMID: 29974208.
  51. Batton B. Neonatal Blood Pressure Standards: What Is "Normal"? Clin Perinatol. 2020 Sep;47(3):469-485. doi: 10.1016/j.clp.2020.05.008. Epub 2020 May 22. PMID: 32713445.
  52. Dionne JM, Bremner SA, Baygani SK, Batton B, Ergenekon E, Bhatt-Mehta V, Dempsey E, Kluckow M, Pesco Koplowitz L, Apele-Freimane D, Iwami H, Klein A, Turner M, Rabe H; International Neonatal Consortium. Method of Blood Pressure Measurement in Neonates and Infants: A Systematic Review and Analysis. J Pediatr. 2020 Jun;221:23-31.e5. doi: 10.1016/j.jpeds.2020.02.072. PMID: 32446487.
  53. Di Biase M, Casani A, Orfeo L. Invasive arterial blood pressure in the neonatal intensive care: a valuable tool to manage very ill preterm and term neonates. Ital J Pediatr. 2015 Sep 24;41(Suppl 1):A9. doi: 10.1186/1824-7288-41-S1-A9. PMCID: PMC4594163.
  54. Rao A, Eskandar-Afshari F, Weiner Y, Billman E, McMillin A, Sella N, Roxlo T, Liu J, Leong W, Helfenbein E, Walendowski A, Muir A, Joseph A, Verma A, Ramamoorthy C, Honkanen A, Green G, Drake K, Govindan RB, Rhine W, Quan X. Clinical Study of Continuous Non-Invasive Blood Pressure Monitoring in Neonates. Sensors (Basel). 2023 Apr 2;23(7):3690. doi: 10.3390/s23073690. PMID: 37050750; PMCID: PMC10098632.
  55. Wu J, Mu D. Vascular catheter-related complications in newborns. J Paediatr Child Health. 2012 Feb;48(2):E91-5. doi: 10.1111/j.1440-1754.2010.01934.x. Epub 2010 Dec 29. PMID: 21199061.
  56. Yi Z, Zhang W, Yang B. Piezoelectric approaches for wearable continuous blood pressure monitoring: A review. Journal of Micromechanics and Microengineering. 2022. doi: 10.1088/1361-6439/ac87ba.
  57. Wang H, Wang L, Sun N, Yao Y, Hao L, Xu L, Greenwald SE. Quantitative Comparison of the Performance of Piezoresistive, Piezoelectric, Acceleration, and Optical Pulse Wave Sensors. Front Physiol. 2020 Jan 14;10:1563. doi: 10.3389/fphys.2019.01563. PMID: 32009976; PMCID: PMC6971205.
  58. Rwei P, Qian C, Abiri A, Zhou Y, Chou EF, Tang WC, Khine M. Soft iontronic capacitive sensor for beat-to-beat blood pressure measurements. Adv Mater Interfaces. 2022;9(18):2200294. doi: 10.1002/admi.202200294.
  59. Bijender, Kumar S, Soni A, Yadav R, Singh SP, Kumar A. Noninvasive Blood Pressure Monitoring via a Flexible and Wearable Piezoresistive Sensor. ACS Omega. 2024 Feb 1;9(6):6355-6365. doi: 10.1021/acsomega.3c04786. PMID: 38375497; PMCID: PMC10876045.
  60. Min S, Kim DH, Joe DJ, Kim BW, Jung YH, Lee JH, Lee BY, Doh I, An J, Youn YN, Joung B, Yoo CD, Ahn HS, Lee KJ. Clinical Validation of a Wearable Piezoelectric Blood-Pressure Sensor for Continuous Health Monitoring. Adv Mater. 2023 Jun;35(26):e2301627. doi: 10.1002/adma.202301627. Epub 2023 May 11. PMID: 36960816.
  61. Kim J, Chou EF, Le J, Wong S, Chu M, Khine M. Soft Wearable Pressure Sensors for Beat-to-Beat Blood Pressure Monitoring. Adv Healthc Mater. 2019 Jul;8(13):e1900109. doi: 10.1002/adhm.201900109. Epub 2019 Apr 29. PMID: 31033256.
  62. Luo N, Dai W, Li C, Zhou Z, Lu L, Poon CCY, Shen SC, Zhang YT, Zhao N. Flexible piezoresistive sensor patch enabling ultralow power cuffless blood pressure measurement. Adv Funct Mater. 2016;26(8):1178-1187. doi: 10.1002/adfm.201504560.
  63. Abiri A, Chou EF, Qian C, Rinehart J, Khine M. Intra-beat biomarker for accurate continuous non-invasive blood pressure monitoring. Sci Rep. 2022;12(1):16772. doi: 10.1038/s41598-022-19096-6.
  64. Lakhal K, Martin M, Ehrmann S, Boulain T. Noninvasive monitors of blood pressure in the critically ill: what are acceptable accuracy and precision? Eur J Anaesthesiol. 2015 May;32(5):367-8. doi: 10.1097/EJA.0000000000000229. PMID: 25844845.
  65. Lakhal K, Ehrmann S, Boulain T. Noninvasive BP Monitoring in the Critically Ill: Time to Abandon the Arterial Catheter? Chest. 2018 Apr;153(4):1023-1039. doi: 10.1016/j.chest.2017.10.030. Epub 2017 Nov 3. PMID: 29108815.
  66. Li J, Jia H, Zhou J, Huang X, Xu L, Jia S, Gao Z, Yao K, Li D, Zhang B, Liu Y, Huang Y, Hu Y, Zhao G, Xu Z, Li J, Yiu CK, Gao Y, Wu M, Jiao Y, Zhang Q, Tai X, Chan RH, Zhang Y, Ma X, Yu X. Thin, soft, wearable system for continuous wireless monitoring of artery blood pressure. Nat Commun. 2023 Aug 17;14(1):5009. doi: 10.1038/s41467-023-40763-3. PMID: 37591881; PMCID: PMC10435523.
  67. Elgendi M, Fletcher R, Liang Y, Howard N, Lovell NH, Abbott D, Lim K, Ward R. The use of photoplethysmography for assessing hypertension. NPJ Digit Med. 2019 Jun 26;2:60. doi: 10.1038/s41746-019-0136-7. PMID: 31388564; PMCID: PMC6594942.
  68. Mukkamala R, Hahn JO, Inan OT, Mestha LK, Kim CS, Töreyin H, Kyal S. Toward Ubiquitous Blood Pressure Monitoring via Pulse Transit Time: Theory and Practice. IEEE Trans Biomed Eng. 2015 Aug;62(8):1879-901. doi: 10.1109/TBME.2015.2441951. Epub 2015 Jun 5. PMID: 26057530; PMCID: PMC4515215.
  69. Chowdhury MH, Shuzan MNI, Chowdhury MEH, Mahbub ZB, Uddin MM, Khandakar A, Reaz MBI. Estimating Blood Pressure from the Photoplethysmogram Signal and Demographic Features Using Machine Learning Techniques. Sensors (Basel). 2020 Jun 1;20(11):3127. doi: 10.3390/s20113127. PMID: 32492902; PMCID: PMC7309072.
  70. Samimi H, Dajani HR. A PPG-Based Calibration-Free Cuffless Blood Pressure Estimation Method Using Cardiovascular Dynamics. Sensors (Basel). 2023 Apr 21;23(8):4145. doi: 10.3390/s23084145. PMID: 37112490; PMCID: PMC10146008.
  71. González S, Hsieh WT, Chen TP. A benchmark for machine-learning based non-invasive blood pressure estimation using photoplethysmogram. Sci Data. 2023 Mar 21;10(1):149. doi: 10.1038/s41597-023-02020-6. PMID: 36944668; PMCID: PMC10030661.
  72. Slapničar G, Mlakar N, Luštrek M. Blood Pressure Estimation from Photoplethysmogram Using a Spectro-Temporal Deep Neural Network. Sensors (Basel). 2019 Aug 4;19(15):3420. doi: 10.3390/s19153420. PMID: 31382703; PMCID: PMC6696196.
  73. Addison PS. Slope Transit Time (STT): A Pulse Transit Time Proxy requiring Only a Single Signal Fiducial Point. IEEE Trans Biomed Eng. 2016 Nov;63(11):2441-2444. doi: 10.1109/TBME.2016.2528507. Epub 2016 Feb 12. PMID: 26890527.
  74. Elgendi M. On the analysis of fingertip photoplethysmogram signals. Curr Cardiol Rev. 2012 Feb;8(1):14-25. doi: 10.2174/157340312801215782. PMID: 22845812; PMCID: PMC3394104.
  75. Liang Y, Elgendi M, Chen Z, Ward R. An optimal filter for short photoplethysmogram signals. Sci Data. 2018 May 1;5:180076. doi: 10.1038/sdata.2018.76. PMID: 29714722; PMCID: PMC5928853.
  76. Tang D, Goh S, Wong D, Lew E. PPG signal reconstruction using a combination of discrete wavelet transform and empirical mode decomposition. IEEE. 2016;1-4. doi: 10.1109/ICIAS.2016.7824118.
  77. Hassani A, Foruzan AH. Improved PPG-based estimation of the blood pressure using latent space features. Signal Image Video Process. 2019;13(6):1141-1147. doi: 10.1007/s11760-019-01460-1
  78. Ceran C, Taner OF, Tekin F, Tezcan S, Tekin O, Civelek B. Management of pulse oximeter probe-induced finger injuries in children: report of two consecutive cases and review of the literature. J Pediatr Surg. 2012 Nov;47(11):e27-9. doi: 10.1016/j.jpedsurg.2012.06.033. PMID: 23164026.
  79. Mukherjee R, Ghosh S, Gupta B, Chakravarty T. A Literature Review on Current and Proposed Technologies of Noninvasive Blood Pressure Measurement. Telemed J E Health. 2018 Mar;24(3):185-193. doi: 10.1089/tmj.2017.0068. Epub 2017 Aug 7. PMID: 28783442.
  80. Quan X, Liu J, Roxlo T, Siddharth S, Leong W, Muir A, Cheong SM, Rao A. Advances in Non-Invasive Blood Pressure Monitoring. Sensors (Basel). 2021 Jun 22;21(13):4273. doi: 10.3390/s21134273. PMID: 34206457; PMCID: PMC8271585.
  81. Le T, Ellington F, Lee TY, Vo K, Khine M, Krishnan SK, Dutt N, Cao H. Continuous non-invasive blood pressure monitoring: A methodological review on measurement techniques. IEEE. 2020. doi: 10.1109/ACCESS.2020.3040257.
  82. C Bramwell MJ, Hill AV. The velocity of the pulse wave in man. Archv fiir Physiol. 1922.
  83. Finnegan E, Davidson S, Harford M, Jorge J, Watkinson P, Young D, Tarassenko L, Villarroel M. Pulse arrival time as a surrogate of blood pressure. Sci Rep. 2021 Nov 23;11(1):22767. doi: 10.1038/s41598-021-01358-4. PMID: 34815419; PMCID: PMC8611024.
  84. Poon C, Zhang YT, Wong G, Poon WS. The beat-to-beat relationship between pulse transit time and systolic blood pressure. IEEE. 2008;129(3):342-343. doi: 10.1109/ITAB.2008.4570616.
  85. Chen W, Kobayashi T, Ichikawa S, Takeuchi Y, Togawa T. Continuous estimation of systolic blood pressure using the pulse arrival time and intermittent calibration. Med Biol Eng Comput. 2000 Sep;38(5):569-74. doi: 10.1007/BF02345755. PMID: 11094816.
  86. Njeru CM, Ansermino JM, Macharia WM, Dunsmuir DT. Variability of respiratory rate measurements in neonates- every minute counts. BMC Pediatr. 2022 Jan 3;22(1):16. doi: 10.1186/s12887-021-03087-z. PMID: 34980049; PMCID: PMC8722355.
  87. MacLean JE, Fitzgerald DA, Waters KA. Developmental changes in sleep and breathing across infancy and childhood. Paediatr Respir Rev. 2015 Sep;16(4):276-84. doi: 10.1016/j.prrv.2015.08.002. Epub 2015 Aug 14. PMID: 26364005.
  88. Jorge J, Villarroel M, Chaichulee S, Guazzi A, Davis S, Green G, McCormick K, Tarassenko L. Non-contact monitoring of respiration in the neonatal intensive care unit. IEEE. 2017;286-293. doi: 10.1109/FG.2017.44.
  89. Steinschneider A. Prolonged apnea and the sudden infant death syndrome: clinical and laboratory observations. Pediatrics. 1972 Oct;50(4):646-54. PMID: 4342142.
  90. Fieselmann JF, Hendryx MS, Helms CM, Wakefield DS. Respiratory rate predicts cardiopulmonary arrest for internal medicine inpatients. J Gen Intern Med. 1993 Jul;8(7):354-60. doi: 10.1007/BF02600071. PMID: 8410395.
  91. Schechtman VL, Lee MY, Wilson AJ, Harper RM. Dynamics of respiratory patterning in normal infants and infants who subsequently died of the sudden infant death syndrome. Pediatr Res. 1996 Oct;40(4):571-7. doi: 10.1203/00006450-199610000-00010. PMID: 8888285.
  92. Reuter S, Moser C, Baack M, Falls S. Respiratory distress in the newborn. Pediatrics in Review. 2014;35 (10):417-429. doi: 10.1542/pir.35-10-417
  93. Williamson M, Poorun R, Hartley C. Apnoea of Prematurity and Neurodevelopmental Outcomes: Current Understanding and Future Prospects for Research. Front Pediatr. 2021 Oct 25;9:755677. doi: 10.3389/fped.2021.755677. PMID: 34760852; PMCID: PMC8573333.
  94. Perlman JM, McMenamin JB, Volpe JJ. Fluctuating cerebral blood-flow velocity in respiratory-distress syndrome. Relation to the development of intraventricular hemorrhage. N Engl J Med. 1983 Jul 28;309(4):204-9. doi: 10.1056/NEJM198307283090402. PMID: 6866033.
  95. Qudsi H, Gupta M. Low-cost, thermistor based respiration monitor. In: Proceedings - 29th Southern Biomedical Engineering Conference, SBEC 2013. 2013;23-24. doi: 10.1109/SBEC.2013.20.
  96. Baker K, Alfvén T, Mucunguzi A, Wharton-Smith A, Dantzer E, Habte T, Matata L, Nanyumba D, Okwir M, Posada M, Sebsibe A, Nicholson J, Marasciulo M, Izadnegahdar R, Petzold M, Källander K. Performance of Four Respiratory Rate Counters to Support Community Health Workers to Detect the Symptoms of Pneumonia in Children in Low Resource Settings: A Prospective, Multicentre, Hospital-Based, Single-Blinded, Comparative Trial. EClinicalMedicine. 2019 Jun 10;12:20-30. doi: 10.1016/j.eclinm.2019.05.013. PMID: 31388660; PMCID: PMC6677646.
  97. Schmalisch G. Current methodological and technical limitations of time and volumetric capnography in newborns. Biomed Eng Online. 2016 Aug 30;15(1):104. doi: 10.1186/s12938-016-0228-4. PMID: 27576441; PMCID: PMC5004292.
  98. Lee H, Rusin CG, Lake DE, Clark MT, Guin L, Smoot TJ, Paget-Brown AO, Vergales BD, Kattwinkel J, Moorman JR, Delos JB. A new algorithm for detecting central apnea in neonates. Physiol Meas. 2012 Jan;33(1):1-17. doi: 10.1088/0967-3334/33/1/1. Epub 2011 Dec 7. PMID: 22156193; PMCID: PMC5366243.
  99. Koyama S, Sato Y, Maru H, Shiokawa S, Martinka M. Wearable FBG sensor system for respiratory strain measurement during daily activities. IEEE Sens J. 2024;24(13):20595-20605. doi: 10.1109/JSEN.2024.3396784.
  100. Olsson E, Ugnell H, Oberg PA, Sedin G. Photoplethysmography for simultaneous recording of heart and respiratory rates in newborn infants. Acta Paediatr. 2000 Jul;89(7):853-61. doi: 10.1080/080352500750043774. PMID: 10943970.
  101. Foo JY, Wilson SJ. Estimation of breathing interval from the photoplethysmographic signals in children. Physiol Meas. 2005 Dec;26(6):1049-58. doi: 10.1088/0967-3334/26/6/014. Epub 2005 Oct 31. PMID: 16311452.
  102. Johansson A, Oberg PA, Sedin G. Monitoring of heart and respiratory rates in newborn infants using a new photoplethysmographic technique. J Clin Monit Comput. 1999 Dec;15(7-8):461-7. doi: 10.1023/a:1009912831366. PMID: 12578044.
  103. Nilsson L, Johansson A, Kalman S. Monitoring of respiratory rate in postoperative care using a new photoplethysmographic technique. J Clin Monit Comput. 2000;16(4):309-15. doi: 10.1023/a:1011424732717. PMID: 12578078.
  104. Pimentel MAF, Johnson AEW, Charlton PH, Birrenkott D, Watkinson PJ, Tarassenko L, Clifton DA. Toward a Robust Estimation of Respiratory Rate From Pulse Oximeters. IEEE Trans Biomed Eng. 2017 Aug;64(8):1914-1923. doi: 10.1109/TBME.2016.2613124. Epub 2016 Nov 18. PMID: 27875128; PMCID: PMC6051482.
  105. Addison PS, Watson JN, Mestek ML, Ochs JP, Uribe AA, Bergese SD. Pulse oximetry-derived respiratory rate in general care floor patients. J Clin Monit Comput. 2015 Feb;29(1):113-20. doi: 10.1007/s10877-014-9575-5. Epub 2014 May 6. PMID: 24796734; PMCID: PMC4309914.
  106. Zhou Y, Zheng Y, Wang C, Yuan J. Extraction of respiratory activity from photoplethysmographic signals based on an independent component analysis technique: Preliminary report. Instrum Sci Technol. 2006;34(5):537-45. doi: 10.1080/10739140600809678.
  107. Wertheim D, Olden C, Savage E, Seddon P. Extracting respiratory data from pulse oximeter plethysmogram traces in newborn infants. Arch Dis Child Fetal Neonatal Ed. 2009 Jul;94(4):F301-3. doi: 10.1136/adc.2008.145342. Epub 2008 Nov 17. PMID: 19015221.
  108. Shelley KH, Awad AA, Stout RG, Silverman DG. The use of joint time frequency analysis to quantify the effect of ventilation on the pulse oximeter waveform. J Clin Monit Comput. 2006 Apr;20(2):81-7. doi: 10.1007/s10877-006-9010-7. Epub 2006 Jun 1. PMID: 16779621.
  109. Johnston WS, Mendelson Y. Extracting breathing rate information from a wearable reflectance pulse oximeter sensor. Conf Proc IEEE Eng Med Biol Soc. 2004;2004:5388-91. doi: 10.1109/IEMBS.2004.1404504. PMID: 17271561.
  110. Karlen W, Raman S, Ansermino JM, Dumont GA. Multiparameter respiratory rate estimation from the photoplethysmogram. IEEE Trans Biomed Eng. 2013;60(7):1946-53. doi: 10.1109/TBME.2013.2246160.
  111. Nilsson L, Johansson A, Kalman S. Respiration can be monitored by photoplethysmography with high sensitivity and specificity regardless of anaesthesia and ventilatory mode. Acta Anaesthesiol Scand. 2005 Sep;49(8):1157-62. doi: 10.1111/j.1399-6576.2005.00721.x. PMID: 16095458.
  112. Cysarz D, Zerm R, Bettermann H, Frühwirth M, Moser M, Kröz M. Comparison of respiratory rates derived from heart rate variability, ECG amplitude, and nasal/oral airflow. Ann Biomed Eng. 2008 Dec;36(12):2085-94. doi: 10.1007/s10439-008-9580-2. Epub 2008 Oct 15. PMID: 18855140.
  113. Mishra S, Norton JJS, Lee Y, Lee DS, Agee N, Chen Y, Chun Y, Yeo WH. Soft, conformal bioelectronics for a wireless human-wheelchair interface. Biosens Bioelectron. 2017 May 15;91:796-803. doi: 10.1016/j.bios.2017.01.044. Epub 2017 Jan 25. PMID: 28152485; PMCID: PMC5323068.
  114. Sun Y, Wang W, Long X, Meftah M, Tan T, Shan C, Ronald MA, de With PHN. Respiration monitoring for premature neonates in NICU. Applied Sciences (Switzerland). 2019 Dec 1;9(23). doi: doi.org/10.3390/app9235246.
  115. Kim YS, Mahmood M, Kwon S, Maher K, Kang JW, Yeo WH. Wireless, Skin-Like Membrane Electronics With Multifunctional Ergonomic Sensors for Enhanced Pediatric Care. IEEE Trans Biomed Eng. 2020 Aug;67(8):2159-2165. doi: 10.1109/TBME.2019.2956048. Epub 2019 Nov 26. PMID: 31794383.
  116. Al-Khalidi FQ, Saatchi R, Burke D, Elphick H, Tan S. Respiration rate monitoring methods: a review. Pediatr Pulmonol. 2011 Jun;46(6):523-9. doi: 10.1002/ppul.21416. Epub 2011 Jan 31. PMID: 21560260.
  117. Greneker EF. Radar sensing of heartbeat and respiration at a distance with applications of the technology. IEEE. 1997. doi: 10.1049/cp:19971650.
  118. Uenoyama M, Matsui T, Yamada K, Suzuki S, Takase B, Suzuki S, Ishihara M, Kawakami M. Non-contact respiratory monitoring system using a ceiling-attached microwave antenna. Med Biol Eng Comput. 2006 Sep;44(9):835-40. doi: 10.1007/s11517-006-0091-8. Epub 2006 Aug 29. PMID: 16941101.
  119. Gleichauf J, Herrmann S, Hennemann L, Krauss H, Nitschke J, Renner P, Niebler C, Koelpin A. Automated Non-Contact Respiratory Rate Monitoring of Neonates Based on Synchronous Evaluation of a 3D Time-of-Flight Camera and a Microwave Interferometric Radar Sensor. Sensors (Basel). 2021 Apr 23;21(9):2959. doi: 10.3390/s21092959. PMID: 33922563; PMCID: PMC8122919.
  120. Beltrão G, Stutz R, Hornberger F, Martins WA, Tatarinov D, Alaee-Kerahroodi M, Lindner U, Stock L, Kaiser E, Goedicke-Fritz S, Schroeder U, R BSM, Zemlin M. Contactless radar-based breathing monitoring of premature infants in the neonatal intensive care unit. Sci Rep. 2022 Mar 25;12(1):5150. doi: 10.1038/s41598-022-08836-3. PMID: 35338172; PMCID: PMC8956695.
  121. Addison PS, Jacquel D, Foo DMH, Antunes A, Borg UR. Video-Based Physiologic Monitoring During an Acute Hypoxic Challenge: Heart Rate, Respiratory Rate, and Oxygen Saturation. Anesth Analg. 2017 Sep;125(3):860-873. doi: 10.1213/ANE.0000000000001989. PMID: 28333706.
  122. McDuff DJ, Estepp JR, Piasecki AM, Blackford EB. A survey of remote optical photoplethysmographic imaging methods. Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:6398-404. doi: 10.1109/EMBC.2015.7319857. PMID: 26737757.
  123. Tan KS, Saatchi R, Elphick H, Burke D. Real-time vision based respiration monitoring system. IEEE. 2010;770-4. doi: 10.1109/CSNDSP16145.2010.5580316.
  124. Aoki T, Takemura S, Mimura F, Nakajima T. Development of non-restrictive Sensing System for sleeping person using fiber grating vision sensor. IEEE. 2001;155-60. doi: 10.1109/MHS.2001.965238.
  125. Rossol SL, Yang JK, Toney-Noland C, Bergin J, Basavaraju C, Kumar P, Lee HC. Non-Contact Video-Based Neonatal Respiratory Monitoring. Children (Basel). 2020 Oct 6;7(10):171. doi: 10.3390/children7100171. PMID: 33036226; PMCID: PMC7600716.
  126. Lorato I, Stuijk S, Meftah M, Kommers D, Andriessen P, van Pul C, de Haan G. Multi-camera infrared thermography for infant respiration monitoring. Biomed Opt Express. 2020 Aug 3;11(9):4848-4861. doi: 10.1364/BOE.397188. PMID: 33014585; PMCID: PMC7510882.
  127. Maurya L, Zwiggelaar R, Chawla D, Mahapatra P. Non-contact respiratory rate monitoring using thermal and visible imaging: a pilot study on neonates. J Clin Monit Comput. 2023 Jun;37(3):815-828. doi: 10.1007/s10877-022-00945-8. Epub 2022 Dec 4. PMID: 36463541; PMCID: PMC10175339.
  128. Pereira CB, Yu X, Goos T, Reiss I, Orlikowsky T, Heimann K, Venema B, Blazek V, Leonhardt S, Teichmann D. Noncontact Monitoring of Respiratory Rate in Newborn Infants Using Thermal Imaging. IEEE Trans Biomed Eng. 2019 Apr;66(4):1105-1114. doi: 10.1109/TBME.2018.2866878. Epub 2018 Aug 23. PMID: 30139045.
  129. Costanzo I, Sen D, Rhein L, Guler U. Respiratory Monitoring: Current State of the Art and Future Roads. IEEE Rev Biomed Eng. 2022;15:103-121. doi: 10.1109/RBME.2020.3036330. Epub 2022 Jan 21. PMID: 33156794.
  130. Liao SH, Chen WJ, Lu MSC. A CMOS MEMS capacitive flow sensor for respiratory monitoring. IEEE Sens J. 2013;13(5):1401-2. doi: 10.1109/JSEN.2013.2245320.
  131. Moradina S, Abdolvand R. MEMS-based passive wireless respiration profile sensor. IEEE. 2016;1-3. doi: 10.1109/ICSENS.2016.7808422.
  132. Mahbub I, Oh T, Shamsir S, Islam S, Pullano SA, Fiorillo AS. Design of a pyroelectric charge amplifier and a piezoelectric energy harvester for a novel non-invasive wearable and self-powered respiratory monitoring system. IEEE. 2017;105-8. doi: 10.1109/R10-HTC.2017.8288917.
  133. Vicente BA, Sebastião R, Sencadas V. Wearable devices for respiratory monitoring. Advanced functional materials. John Wiley and Sons Inc. 2024. doi: 10.1002/adfm.202404348.
  134. Vaidya R, Visintainer P, Singh R. Tidal volume measurements in the delivery room in preterm infants requiring positive pressure ventilation via endotracheal tube-feasibility study. J Perinatol. 2021 Aug;41(8):1930-1935. doi: 10.1038/s41372-021-01113-7. Epub 2021 Jun 10. PMID: 34112962; PMCID: PMC8191447.
  135. Poulton DA, Schmölzer GM, Morley CJ, Davis PG. Assessment of chest rise during mask ventilation of preterm infants in the delivery room. Resuscitation. 2011 Feb;82(2):175-9. doi: 10.1016/j.resuscitation.2010.10.012. Epub 2010 Nov 12. PMID: 21074926.
  136. Soliman MM, Ganti VG, Inan OT. Towards Wearable Estimation of Tidal Volume via Electrocardiogram and Seismocardiogram Signals. IEEE Sens J. 2022 Sep 15;22(18):18093-18103. doi: 10.1109/jsen.2022.3196601. Epub 2022 Aug 10. PMID: 37091042; PMCID: PMC10120872.
  137. Laufer B, Hoeflinger F, Docherty PD, Jalal NA, Krueger-Ziolek S, Rupitsch SJ, Reindl L, Moeller K. Characterisation and Quantification of Upper Body Surface Motions for Tidal Volume Determination in Lung-Healthy Individuals. Sensors (Basel). 2023 Jan 22;23(3):1278. doi: 10.3390/s23031278. PMID: 36772318; PMCID: PMC9920533.
  138. Chu M, Nguyen T, Pandey V, Zhou Y, Pham HN, Bar-Yoseph R, Radom-Aizik S, Jain R, Cooper DM, Khine M. Respiration rate and volume measurements using wearable strain sensors. NPJ Digit Med. 2019 Feb 13;2:8. doi: 10.1038/s41746-019-0083-3. PMID: 31304358; PMCID: PMC6550208.
  139. Kim JS, Truong T, Kim J. Development of Embroidery-Type Sensor Capable of Detecting Respiration Using the Capacitive Method. Polymers (Basel). 2023 Jan 18;15(3):503. doi: 10.3390/polym15030503. PMID: 36771802; PMCID: PMC9920054.
  140. Panahi A, Hassanzadeh A, Moulavi A. Design of a low cost, double triangle, piezoelectric sensor for respiratory monitoring applications. Sens Biosensing Res. 2020:30. doi: 10.1016/j.sbsr.2020.100378.
  141. Wang S, Tai H, Liu B, Duan Z, Yuan Z, Pan H, Yuanjie S, Guangzhong X, Xiaosong D, Yadong J. A facile respiration-driven triboelectric nanogenerator for multifunctional respiratory monitoring. Nano Energy. 2019;58:312-21. doi: 10.1016/j.nanoen.2019.01.042.
  142. Sweet DG, Carnielli VP, Greisen G, Hallman M, Klebermass-Schrehof K, Ozek E, Te Pas A, Plavka R, Roehr CC, Saugstad OD, Simeoni U, Speer CP, Vento M, Visser GHA, Halliday HL. European Consensus Guidelines on the Management of Respiratory Distress Syndrome: 2022 Update. Neonatology. 2023;120(1):3-23. doi: 10.1159/000528914. Epub 2023 Feb 15. PMID: 36863329; PMCID: PMC10064400.
  143. Reyes-Corral M, Sola-Idígora N, de la Puerta R, Montaner J, Ybot-González P. Nutraceuticals in the Prevention of Neonatal Hypoxia-Ischemia: A Comprehensive Review of their Neuroprotective Properties, Mechanisms of Action and Future Directions. Int J Mol Sci. 2021 Mar 3;22(5):2524. doi: 10.3390/ijms22052524. PMID: 33802413; PMCID: PMC7959318.
  144. Cafaro RP. Hypoxia: Its Causes and Symptoms. J Am Dent Soc Anesthesiol. 1960 Apr;7(4):4-8. PMID: 19598857; PMCID: PMC2067517.
  145. Mohamed T, Abdul-Hafez A, Gewolb IH, Uhal BD. Oxygen injury in neonates: which is worse? hyperoxia, hypoxia, or alternating hyperoxia/hypoxia. J Lung Pulm Respir Res. 2020;7(1):4-13. Epub 2020 Jan 29. PMID: 34337150; PMCID: PMC8320601.
  146. Perrone S, Bracciali C, Di Virgilio N, Buonocore G. Oxygen Use in Neonatal Care: A Two-edged Sword. Front Pediatr. 2017 Jan 9;4:143. doi: 10.3389/fped.2016.00143. PMID: 28119904; PMCID: PMC5220090.
  147. Morgan C, Newell SJ, Ducker DA, Hodgkinson J, White DK, Morley CJ, Church JM. Continuous neonatal blood gas monitoring using a multiparameter intra-arterial sensor. Arch Dis Child Fetal Neonatal Ed. 1999 Mar;80(2):F93-8. doi: 10.1136/fn.80.2.f93. PMID: 10325783; PMCID: PMC1720901.
  148. Jubran A. Pulse oximetry. Crit Care. 2015 Jul 16;19(1):272. doi: 10.1186/s13054-015-0984-8. PMID: 26179876; PMCID: PMC4504215.
  149. O'Brien F, Walker IA. Fluid homeostasis in the neonate. Paediatr Anaesth. 2014 Jan;24(1):49-59. doi: 10.1111/pan.12326. Epub 2013 Dec 4. PMID: 24299660.
  150. Phattraprayoon N, Sardesai S, Durand M, Ramanathan R. Accuracy of pulse oximeter readings from probe placement on newborn wrist and ankle. J Perinatol. 2012 Apr;32(4):276-80. doi: 10.1038/jp.2011.90. Epub 2011 Jul 7. PMID: 21738120.
  151. Punj J, Jaryal A, Mahalingam S, Mukundan C, Pandey R, Darlong V, Chandralekha. Toe gangrene in an infant subsequent to application of adult-type pulse oximeter probe for 10 min. J Anesth. 2010 Aug;24(4):630-2. doi: 10.1007/s00540-010-0930-5. PMID: 20390308.
  152. Dilli D, Soylu H, Tekin N. Neonatal hemodynamics and management of hypotension in newborns. Turk Pediatri Ars. 2018 Dec 25;53(Suppl 1):S65-S75. doi: 10.5152/TurkPediatriArs.2018.01801. PMID: 31236020; PMCID: PMC6568285.
  153. Verstraete EH, Blot K, Mahieu L, Vogelaers D, Blot S. Prediction models for neonatal health care-associated sepsis: a meta-analysis. Pediatrics. 2015 Apr;135(4):e1002-14. doi: 10.1542/peds.2014-3226. Epub 2015 Mar 9. PMID: 25755236.
  154. Verstraete EH, Blot K, Mahieu L, Vogelaers D, Blot S. Prediction models for neonatal health care-associated sepsis: a meta-analysis. Pediatrics. 2015 Apr;135(4):e1002-14. doi: 10.1542/peds.2014-3226. Epub 2015 Mar 9. PMID: 25755236.
  155. Schallom L, Sona C, McSweeney M, Mazuski J. Comparison of forehead and digit oximetry in surgical/trauma patients at risk for decreased peripheral perfusion. Heart Lung. 2007 May-Jun;36(3):188-94. doi: 10.1016/j.hrtlng.2006.07.007. PMID: 17509425.
  156. Berkenbosch JW, Tobias JD. Comparison of a new forehead reflectance pulse oximeter sensor with a conventional digit sensor in pediatric patients. Respir Care. 2006 Jul;51(7):726-31. PMID: 16800905..
  157. Stockwell SJ, Kwok TC, Morgan SP, Sharkey D, Hayes-Gill BR. Forehead monitoring of heart rate in neonatal intensive care. Front Physiol. 2023 Apr 4;14:1127419. doi: 10.3389/fphys.2023.1127419. PMID: 37082236; PMCID: PMC10110846.
  158. Dassel AC, Graaff R, Meijer A, Zijlstra WG, Aarnoudse JG. Reflectance pulse oximetry at the forehead of newborns: the influence of varying pressure on the probe. J Clin Monit. 1996 Nov;12(6):421-8. doi: 10.1007/BF02199702. PMID: 8982906.
  159. Berkenbosch JW, Tobias JD. Comparison of a new forehead reflectance pulse oximeter sensor with a conventional digit sensor in pediatric patients. Respir Care. 2006 Jul;51(7):726-31. PMID: 16800905.
  160. Grubb MR, Carpenter J, Crowe JA, Teoh J, Marlow N, Ward C, Mann C, Sharkey D, Hayes-Gill BR. Forehead reflectance photoplethysmography to monitor heart rate: preliminary results from neonatal patients. Physiol Meas. 2014 May;35(5):881-93. doi: 10.1088/0967-3334/35/5/881. Epub 2014 Apr 17. PMID: 24742972.
  161. Henry C, Shipley L, Ward C, Mirahmadi S, Liu C, Morgan S, Crowe J, Carpenter J, Hayes-Gill B, Sharkey D. Accurate neonatal heart rate monitoring using a new wireless, cap mounted device. Acta Paediatr. 2021 Jan;110(1):72-78. doi: 10.1111/apa.15303. Epub 2020 May 18. PMID: 32281685.
  162. Proenca M, Grossenbacher O, Dasen S, Moser V, Ostojic D, Lemkaddem A, Ferrario D, Lemay M, Wolf M, Fauchere JC, Karen T. Performance Assessment of a Dedicated Reflectance Pulse Oximeter in a Neonatal Intensive Care Unit. Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:1502-1505. doi: 10.1109/EMBC.2018.8512504. PMID: 30440677.
  163. van Weteringen W, Goos TG, van Essen T, Ellenberger C, Hayoz J, de Jonge RCJ, Reiss IKM, Schumacher PM. Novel transcutaneous sensor combining optical tcPO2 and electrochemical tcPCO2 monitoring with reflectance pulse oximetry. Med Biol Eng Comput. 2020 Feb;58(2):239-247. doi: 10.1007/s11517-019-02067-x. Epub 2019 Nov 18. PMID: 31741291; PMCID: PMC6994448.
  164. Thermal protection of the newborn: A practical guide. 1997.
  165. Lee EP, Yu MK, Lee SC, Gao FX, Wu HP. Predictive power of a single body temperature at different cutoff values for neonates in the nursery transferring to special care nursery. Medicine (Baltimore). 2018 Oct;97(42):e12619. doi: 10.1097/MD.0000000000012619. PMID: 30334946; PMCID: PMC6211842.
  166. Lunze K, Bloom DE, Jamison DT, Hamer DH. The global burden of neonatal hypothermia: systematic review of a major challenge for newborn survival. BMC Med. 2013 Jan 31;11:24. doi: 10.1186/1741-7015-11-24. PMID: 23369256; PMCID: PMC3606398.
  167. Nayeri F, Nili F. Hypothermia at birth and its associated complications in newborns: A follow up study. Iranian J Publ Health. 2006;35.
  168. Lubkowska A, Szymański S, Chudecka M. Surface Body Temperature of Full-Term Healthy Newborns Immediately after Birth-Pilot Study. Int J Environ Res Public Health. 2019 Apr 12;16(8):1312. doi: 10.3390/ijerph16081312. PMID: 31013692; PMCID: PMC6518189.
  169. Smith J. Methods and devices of temperature measurement in the neonate: A narrative review and practice recommendations. Newborn and Infant Nursing Reviews. 2014;14(2):64-71. doi: 10.1053/j.nainr.2014.03.001.
  170. Ji Y, Han D, Han L, Xie S, Pan S. The Accuracy of a Wireless Axillary Thermometer for Core Temperature Monitoring in Pediatric Patients Having Noncardiac Surgery: An Observational Study. J Perianesth Nurs. 2021 Dec;36(6):685-689. doi: 10.1016/j.jopan.2021.02.008. Epub 2021 Aug 9. PMID: 34384688.
  171. Hymczak H, Gołąb A, Mendrala K, Plicner D, Darocha T, Podsiadło P, Hudziak D, Gocoł R, Kosiński S. Core Temperature Measurement-Principles of Correct Measurement, Problems, and Complications. Int J Environ Res Public Health. 2021 Oct 10;18(20):10606. doi: 10.3390/ijerph182010606. PMID: 34682351; PMCID: PMC8535559.
  172. Callanan D. Detecting fever in young infants: reliability of perceived, pacifier, and temporal artery temperatures in infants younger than 3 months of age. Pediatr Emerg Care. 2003 Aug;19(4):240-3. doi: 10.1097/01.pec.0000086231.54586.15. PMID: 12972820.
  173. Press S, Quinn BJ. The pacifier thermometer. Comparison of supralingual with rectal temperatures in infants and young children. Arch Pediatr Adolesc Med. 1997 Jun;151(6):551-4. doi: 10.1001/archpedi.1997.02170430017003. PMID: 9193236.
  174. Mah AJ, Ghazi Zadeh L, Khoshnam Tehrani M, Askari S, Gandjbakhche AH, Shadgan B. Studying the Accuracy and Function of Different Thermometry Techniques for Measuring Body Temperature. Biology (Basel). 2021 Dec 15;10(12):1327. doi: 10.3390/biology10121327. PMID: 34943242; PMCID: PMC8698704.
  175. Lei D, Tan K, Malhotra A. Temperature Monitoring Devices in Neonates. Front Pediatr. 2021 Aug 24;9:732810. doi: 10.3389/fped.2021.732810. PMID: 34504819; PMCID: PMC8421638.
  176. Choi J, Bandodkar AJ, Reeder JT, Ray TR, Turnquist A, Kim SB, Nyberg N, Hourlier-Fargette A, Model JB, Aranyosi AJ, Xu S, Ghaffari R, Rogers JA. Soft, Skin-Integrated Multifunctional Microfluidic Systems for Accurate Colorimetric Analysis of Sweat Biomarkers and Temperature. ACS Sens. 2019 Feb 22;4(2):379-388. doi: 10.1021/acssensors.8b01218. Epub 2019 Feb 1. PMID: 30707572.
  177. Jeon HS, Kim JH, Jun MBG, Jeong YH. Fabrication of Thermochromic Membrane and Its Characteristics for Fever Detection. Materials (Basel). 2021 Jun 22;14(13):3460. doi: 10.3390/ma14133460. PMID: 34206427; PMCID: PMC8269493.
  178. Kumar A, Hsieh PY, Shaikh MO, Kumar RKR, Chuang CH. Flexible Temperature Sensor Utilizing MWCNT Doped PEG-PU Copolymer Nanocomposites. Micromachines (Basel). 2022 Jan 27;13(2):197. doi: 10.3390/mi13020197. PMID: 35208321; PMCID: PMC8875379.
  179. Dankoco MD, Tesfay GY, Benevent E, Bendahan M. Temperature sensor realized by inkjet printing process on flexible substrate. Materials Science and Engineering: B. 2016;205:1-5. doi: 10.1016/j.mseb.2015.11.003.
  180. Chen Y, Lu B, Chen Y, Feng X. Breathable and Stretchable Temperature Sensors Inspired by Skin. Sci Rep. 2015 Jun 22;5:11505. doi: 10.1038/srep11505. PMID: 26095941; PMCID: PMC4476093.
  181. Moser Y, Gijs MAM. Miniaturized flexible temperature sensor. Journal of Microelectromechanical Systems. 2007;16(6):1349-54. doi: 10.1109/JMEMS.2007.908437.
  182. Husain MD, Kennon R. Preliminary investigations into the development of textile based temperature sensor for healthcare applications. Fibers. 2013;1(1):2-10. doi: 10.3390/fib1010002.
  183. Oh S, Yoo JY, Maeng WY, Yoo S, Yang T, Slattery SM, Pessano S, Chang E, Jeong H, Kim J, Ahn HY, Kim Y, Kim J, Xu S, Weese-Mayer DE, Rogers JA. Simple, miniaturized biosensors for wireless mapping of thermoregulatory responses. Biosens Bioelectron. 2023 Oct 1;237:115545. doi: 10.1016/j.bios.2023.115545. Epub 2023 Jul 26. PMID: 37517336.
  184. Zeiner A, Klewer J, Sterz F, Haugk M, Krizanac D, Testori C, Losert H, Ayati S, Holzer M. Non-invasive continuous cerebral temperature monitoring in patients treated with mild therapeutic hypothermia: an observational pilot study. Resuscitation. 2010 Jul;81(7):861-6. doi: 10.1016/j.resuscitation.2010.03.018. Epub 2010 Apr 15. PMID: 20398992.
  185. Teunissen LP, Klewer J, de Haan A, de Koning JJ, Daanen HA. Non-invasive continuous core temperature measurement by zero heat flux. Physiol Meas. 2011 May;32(5):559-70. doi: 10.1088/0967-3334/32/5/005. Epub 2011 Mar 28. PMID: 21444968.
  186. Atallah L, Bongers E, Lamichhane B, Bambang-Oetomo S. Unobtrusive Monitoring of Neonatal Brain Temperature Using a Zero-Heat-Flux Sensor Matrix. IEEE J Biomed Health Inform. 2016 Jan;20(1):100-7. doi: 10.1109/JBHI.2014.2385103. Epub 2014 Dec 22. PMID: 25546867.
  187. Premarket assessment of pediatric medical devices guidance for industry and food and drug administration staff. This document supersedes “Guidance for industry and FDA staff: Premarket assessment of pediatric medical devices” dated Preface Public Comment.
  188. Hwang TJ, Kesselheim AS, Bourgeois FT. Postmarketing trials and pediatric device approvals. Pediatrics. 2014 May;133(5):e1197-202. doi: 10.1542/peds.2013-3348. Epub 2014 Apr 14. PMID: 24733871; PMCID: PMC4531281.
  189. SECTION ON CARDIOLOGY AND CARDIAC SURGERY; SECTION ON ORTHOPAEDICS. Off-Label Use of Medical Devices in Children. Pediatrics. 2017 Jan;139(1):e20163439. doi: 10.1542/peds.2016-3439. PMID: 28025239.
  190. Espinoza J, Shah P, Nagendra G, Bar-Cohen Y, Richmond F. Pediatric Medical Device Development and Regulation: Current State, Barriers, and Opportunities. Pediatrics. 2022 May 1;149(5):e2021053390. doi: 10.1542/peds.2021-053390. PMID: 35425971.
  191. Almond CS, Chen EA, Berman MR, Less JR, Baldwin JT, Linde-Feucht SR, Hoke TR, Pearson GD, Jenkins K, Duncan BW, Zuckerman BD. High-risk medical devices, children and the FDA: regulatory challenges facing pediatric mechanical circulatory support devices. ASAIO J. 2007 Jan-Feb;53(1):4-7. doi: 10.1097/01.mat.0000247958.84788.3a. PMID: 17237642.
  192. Bui AL, Dieleman JL, Hamavid H, Birger M, Chapin A, Duber HC, Horst C, Reynolds A, Squires E, Chung PJ, Murray CJ. Spending on Children's Personal Health Care in the United States, 1996-2013. JAMA Pediatr. 2017 Feb 1;171(2):181-189. doi: 10.1001/jamapediatrics.2016.4086. PMID: 28027344; PMCID: PMC5546095.
  193. Catenaccio E, Rochlin JM, Simon HK. Differences in Lifetime Earning Potential Between Pediatric and Adult Physicians. Pediatrics. 2021 Aug;148(2):e2021051194. doi: 10.1542/peds.2021-051194. PMID: 34330865.
  194. Gitterman DP, Langford WS, Hay WW Jr. The Fragile State of the National Institutes of Health Pediatric Research Portfolio, 1992-2015: Doing More With Less? JAMA Pediatr. 2018 Mar 1;172(3):287-293. doi: 10.1001/jamapediatrics.2017.4931. PMID: 29340575.
  195. Gottlieb ER, Ziegler J, Morley K, Rush B, Celi LA. Assessment of Racial and Ethnic Differences in Oxygen Supplementation Among Patients in the Intensive Care Unit. JAMA Intern Med. 2022 Aug 1;182(8):849-858. doi: 10.1001/jamainternmed.2022.2587. PMID: 35816344; PMCID: PMC9274443.
  196. Zonios G, Bykowski J, Kollias N. Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy. J Invest Dermatol. 2001 Dec;117(6):1452-7. doi: 10.1046/j.0022-202x.2001.01577.x. PMID: 11886508.
  197. Qian C, Ye F, Li J, Tseng P, Khine M. Wireless and battery-free sensor for interstitial fluid pressure monitoring. Sensors. 2024;24(14):4429. doi: 10.3390/s24144429.
  198. Barreto J, Perez G, Kaddour AS, Georgakopoulos S V. A Study of wearable wireless power transfer systems on the human body. IEEE Open Journal of Antennas and Propagation. 2021;2:86-94. doi: 10.1109/OJAP.2020.3043579.
  199. Chen LY, Tee BC, Chortos AL, Schwartz G, Tse V, Lipomi DJ, Wong HS, McConnell MV, Bao Z. Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care. Nat Commun. 2014 Oct 6;5:5028. doi: 10.1038/ncomms6028. PMID: 25284074.
  200. Ulrich LC, Joseph FD, Lewis DY, Koenig RL. FDA's pediatric device consortia: national program fosters pediatric medical device development. Pediatrics. 2013 May;131(5):981-5. doi: 10.1542/peds.2012-1534. Epub 2013 Apr 8. PMID: 23569100.
  201. FDA News Release FDA awards ve grants to advance the development of pediatric medical devices. 2018.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search