Amita Pandey* and Tarannum Hashmi
Volume5-Issue8
Dates: Received: 2024-07-18 | Accepted: 2024-08-06 | Published: 2024-08-12
Pages: 960-968
Abstract
Background: This study investigates the effect of chloroform, an organic compound with anti-bacterial properties, produced both naturally and due to anthropogenic activities on the viability of temperate bacteriophage lambda (phage lambda) and its host, Escherichia coli (E. coli). The study was initiated while repurposing phage lambda for testing efficacy and efficiency of disinfectants.
Results: Plaque assays and Polymerase Chain Reaction (PCR) using primers specific to the Lambda Tail Protein (LTP) demonstrated a decrease in plaque-forming units and the log copy number of phage lambda following chloroform treatment of phage lysates. Interestingly, PCR with 16 S rRNA primers detected the presence of bacteria in both chloroform-treated and untreated lysates, suggesting that E. coli lysogens, small enough to pass through 0.2 μm filters, which is commonly used for sterilization, were present in the phage lysates. The presence of lysogens in the phage lysates was further supported by the absence of a 16 S rRNA amplicon in lysates prepared without phage lambda infection and the presence of an amplicon in DNase-treated lysates. Additionally, PCR and microscopy revealed that chloroform treatment of phage lysates increased the lysogen copy number, decreased lysogen size, and altered lysogens phage-producing ability.
Conclusion: In summary, while chloroform had a slight effect on the viability of phage lambda, most of the phage remained resistant to chloroform because they lack a lipid coat. Phage lambda transitioned to a lysogenic life cycle under sub-optimal growth conditions, leading to the formation of E. coli lysogens. These lysogens were more resistant to stresses like chloroform, ensuring the survival of both the phage and the host during adverse conditions
FullText HTML
FullText PDF
DOI: 10.37871/jbres1974
Certificate of Publication

Copyright
© 2024 Pandey A, et al. Distributed under Creative Commons CC-BY 4.0
How to cite this article
Pandey A, Hashmi T. The Impact of Chloroform on Viability of Temperate Bacteriophage Lambda and Survival of its Host, Escherichia coli J Biomed Res Environ Sci. 2024 Aug 12; 5(8): 960-968. doi: 10.37871/jbres1974, Article ID: JBRES1974, Available at: https://www.jelsciences.com/articles/jbres1974.pdf
Subject area(s)
References
- LEDERBERG J. Streptomycin resistance; a genetically recessive mutation. J Bacteriol. 1951 May;61(5):549-50. doi: 10.1128/jb.61.5.549-550.1951. PMID: 14832197; PMCID: PMC386043.
- Hershey AD. The bacteriophage lambda. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 1971.
- Oppenheim AB, Kobiler O, Stavans J, Court DL, Adhya S. Switches in bacteriophage lambda development. Annu Rev Genet. 2005;39:409-29. doi: 10.1146/annurev.genet.39.073003.113656. PMID: 16285866.
- Folkmanis A, Takeda Y, Simuth J, Gussin G, Echols H. Purification and properties of a DNA-binding protein with characteristics expected for the Cro protein of bacteriophage lambda, a repressor essential for lytic growth. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2249-53. doi: 10.1073/pnas.73.7.2249. PMID: 1065873; PMCID: PMC430516.
- Little JW. Autodigestion of lexA and phage lambda repressors. Proc Natl Acad Sci U S A. 1984 Mar;81(5):1375-9. doi: 10.1073/pnas.81.5.1375. PMID: 6231641; PMCID: PMC344836.
- Walker GC. The SOS Response of Escherichia coli. In: Neidhardt FC, Curtiss R III, Ingraham JL, Lin EC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE, editors. Escherichia coli and Salmonella: Cellular and molecular biology. Washington, D.C.: American Society for Microbiology; 1996. p.1400-1416.
- Cappelletti M, Frascari D, Zannoni D, Fedi S. Microbial degradation of chloroform. Appl Microbiol Biotechnol. 2012 Dec;96(6):1395-409. doi: 10.1007/s00253-012-4494-1. Epub 2012 Oct 24. PMID: 23093177.
- Weigold P, Ruecker A, Jochmann M, Osorio Barajas XL, Lege S, Zwiener C, Kappler A, Behrens S. Formation of chloroform and tetrachloroethene by Sinorhizobium meliloti strain 1021. Lett Appl Microbiol. 2015 Oct;61(4):346-53. doi: 10.1111/lam.12462. Epub 2015 Aug 4. PMID: 26119060.
- Wawersik J. Die Geschichte der Chloroformnarkose [History of chloroform anesthesia]. Anaesthesiol Reanim. 1997;22(6):144-52. German. PMID: 9487785.
- Good ML, McCammon A. An removal of gutta-percha and root canal sealer: a literature review and an audit comparing current practice in dental schools. Dent Update. 2012 Dec;39(10):703-8. doi: 10.12968/denu.2012.39.10.703. PMID: 23367635.
- Forczek ST, Pavlík M, Holík J, Rederer L, Ferenčík M. The natural chlorine cycle - Formation of the carcinogenic and greenhouse gas compound chloroform in drinking water reservoirs. Chemosphere. 2016 Aug;157:190-9. doi: 10.1016/j.chemosphere.2016.05.017. Epub 2016 May 24. PMID: 27231877.
- Li XF, Mitch WA. Drinking Water Disinfection Byproducts (DBPs) and Human Health Effects: Multidisciplinary Challenges and Opportunities. Environ Sci Technol. 2018 Feb 20;52(4):1681-1689. doi: 10.1021/acs.est.7b05440. Epub 2018 Jan 21. PMID: 29283253.
- Patterson TA, Dean M. Preparation of high titer lambda phage lysates. Nucleic Acids Res. 1987 Aug 11;15(15):6298. doi: 10.1093/nar/15.15.6298. PMID: 2957644; PMCID: PMC306089.
- Sambrook J, Fritsch ER, Maniatis T. Molecular Cloning: A Laboratory Manual. 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1989.
- Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012 Jul;9(7):671-5. doi: 10.1038/nmeth.2089. PMID: 22930834; PMCID: PMC5554542.
- Gram HC. Über die isolierte Färbung der Schizomyceten in Schnitt- und Trockenpräparaten. Fortschritte der Medizin (in German). 1884;2:185-189.
- Student. The probable error of a mean. Biometrika. 1908;1-25.
- Wickham H. ggplot2: Elegant Graphics for Data Analysis. 2nd ed. Springer-Verlag New York; 2016.
- Taylor J, Bettelheim KA. The action of chloroform-killed suspensions of enteropathogenic Escherichia coli on ligated rabbit-gut segments. J Gen Microbiol. 1966 Feb;42(2):309-13. doi: 10.1099/00221287-42-2-309. PMID: 5330337.
- Whaley D, Damyar K, Witek RP, Mendoza A, Alexander M, Lakey JR. Cryopreservation: An Overview of Principles and Cell-Specific Considerations. Cell Transplant. 2021 Jan-Dec;30:963689721999617. doi: 10.1177/0963689721999617. PMID: 33757335; PMCID: PMC7995302.
- Brüssow H, Canchaya C, Hardt WD. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev. 2004 Sep;68(3):560-602, table of contents. doi: 10.1128/MMBR.68.3.560-602.2004. PMID: 15353570; PMCID: PMC515249.
- Fortier LC, Sekulovic O. Importance of prophages to evolution and virulence of bacterial pathogens. Virulence. 2013 Jul 1;4(5):354-65. doi: 10.4161/viru.24498. Epub 2013 Apr 23. PMID: 23611873; PMCID: PMC3714127.
- Edelman DC, Barletta J. Real-time PCR provides improved detection and titer determination of bacteriophage. Biotechniques. 2003 Aug;35(2):368-75. doi: 10.2144/03352rr02. PMID: 12951778.
- van Teeseling MCF, de Pedro MA, Cava F. Determinants of Bacterial Morphology: From Fundamentals to Possibilities for Antimicrobial Targeting. Front Microbiol. 2017 Jul 10;8:1264. doi: 10.3389/fmicb.2017.01264. PMID: 28740487; PMCID: PMC5502672.
- Nanda AM, Thormann K, Frunzke J. Impact of spontaneous prophage induction on the fitness of bacterial populations and host-microbe interactions. J Bacteriol. 2015 Feb;197(3):410-9. doi: 10.1128/JB.02230-14. Epub 2014 Nov 17. PMID: 25404701; PMCID: PMC4285972.
- Imamovic L, Ballesté E, Jofre J, Muniesa M. Quantification of Shiga toxin-converting bacteriophages in wastewater and in fecal samples by real-time quantitative PCR. Appl Environ Microbiol. 2010 Sep;76(17):5693-701. doi: 10.1128/AEM.00107-10. Epub 2010 Jul 9. PMID: 20622134; PMCID: PMC2935055.