Adam M Jorgensen#, Ronald A Nelson#, Cara Clouse, Christie L Scott, Uma Gandhi, Anthony Atala and Sean V Murphy*
Volume5-Issue8
Dates: Received: 2024-07-03 | Accepted: 2024-08-29 | Published: 2024-08-30
Pages: 1012-1024
Abstract
Third-degree burn wounds can cause devastating loss of functionality for patients. As such, platform technologies that allow effective wound management are needed. Herein, we describe the use of MatriStem™ Urinary Bladder Matrix (UBM)-based products (MicroMatrix® + Cytal®) and a collagen and glycosaminoglycan (GAG) product (Integra® Dermal Regeneration Template (DRT)) in a porcine third-degree burn wound model. Full-thickness third-degree burns were created on dorsal porcine skin, debrided using an excisional model, then treated with MicroMatrix® + Cytal® or Integra® DRT; treatment groups were compared against the untreated wound controls. MicroMatrix® + Cytal®-treated wounds appeared to have faster wound closure and epithelialization compared to untreated and Integra® DRT-treated wounds. Multi-factor wound healing analysis demonstrated that MicroMatrix® + Cytal® performed better than untreated and Integra® DRT-treated wounds based on the metrics of contraction, epithelialization, and wound closure rate. Histological analysis demonstrated that all treated wounds had complete epidermal closure at various levels of maturation and presented mature, thick, and organized collagen bundles. Integra® DRT -treated wounds appeared to have more similar histological resemblance to native tissue compared to MicroMatrix® + Cytal® and untreated control. Importantly, treatment with either MicroMatrix® + Cytal® products or Integra® DRT, resulted in an extracellular matrix (ECM) composition and cellular organization similar to healthy skin. MicroMatrix®+ Cytal®-treatment promoted rapid wound closure and neo-epithelialization, while Integra® DRT-treatment seemed superior in promoting a healthy and pro-regenerative dermal wound bed.
FullText HTML
FullText PDF
DOI: 10.37871/jbres1983
Certificate of Publication

Copyright
© 2024 Jorgensen AM, et al. Distributed under Creative Commons CC-BY 4.0
How to cite this article
Jorgensen AM, Nelson RA, Clouse C, Scott CL, Gandhi U, Atala A, Murphy SV. Preclinical Assessment of MicroMatrix® + Cytal® and Integra® DRT in a Porcine Third-Degree Burn Model J Biomed Res Environ Sci. 2024 Aug 30; 5(8): 1012-1024. doi: 10.37871/jbres1983, Article ID: JBRES1983, Available at: https://www.jelsciences.com/articles/jbres1983.pdf
Subject area(s)
References
- Blair VP, Brown JB. The use and uses of large split skin grafts of intermediate thickness. Plastic and Reconstructive Surgery. 1968;42(1):65-75.
- McDonald WS, Deitch EA. Hypertrophic skin grafts in burned patients: a prospective analysis of variables. J Trauma. 1987 Feb;27(2):147-50. doi: 10.1097/00005373-198702000-00008. PMID: 3546710.
- TANNER JC Jr, VANDEPUT J, OLLEY JF. THE MESH SKIN GRAFT. Plast Reconstr Surg. 1964 Sep;34:287-92. PMID: 14209177.
- Ratner D. Skin grafting. From here to there. Dermatol Clin. 1998 Jan;16(1):75-90. doi: 10.1016/s0733-8635(05)70488-5. PMID: 9460579.
- Alexander JW, MacMillan BG, Law E, Kittur DS. Treatment of severe burns with widely meshed skin autograft and meshed skin allograft overlay. J Trauma. 1981 Jun;21(6):433-8. PMID: 7230295.
- Vecin NM, Kirsner RS. Skin substitutes as treatment for chronic wounds: current and future directions. Front Med (Lausanne). 2023 Aug 29;10:1154567. doi: 10.3389/fmed.2023.1154567. PMID: 37711741; PMCID: PMC10498286.
- Safi AF, Kauke M, Nelms L, Palmer WJ, Tchiloemba B, Kollar B, Haug V, Pomahač B. Local immunosuppression in vascularized composite allotransplantation (VCA): A systematic review. J Plast Reconstr Aesthet Surg. 2021 Feb;74(2):327-335. doi: 10.1016/j.bjps.2020.10.003. Epub 2020 Oct 21. PMID: 33229219.
- Lesher AP, Curry RH, Evans J, Smith VA, Fitzgerald MT, Cina RA, Streck CJ, Hebra AV. Effectiveness of Biobrane for treatment of partial-thickness burns in children. J Pediatr Surg. 2011 Sep;46(9):1759-63. doi: 10.1016/j.jpedsurg.2011.03.070. PMID: 21929986; PMCID: PMC4257603.
- Rahmanian-Schwarz A, Beiderwieden A, Willkomm LM, Amr A, Schaller HE, Lotter O. A clinical evaluation of Biobrane(®) and Suprathel(®) in acute burns and reconstructive surgery. Burns. 2011 Dec;37(8):1343-8. doi: 10.1016/j.burns.2011.07.010. Epub 2011 Aug 17. PMID: 21852044.
- Przekora A. A Concise Review on Tissue Engineered Artificial Skin Grafts for Chronic Wound Treatment: Can We Reconstruct Functional Skin Tissue In Vitro? Cells. 2020 Jul 6;9(7):1622. doi: 10.3390/cells9071622. PMID: 32640572; PMCID: PMC7407512.
- Albanna M, Binder KW, Murphy SV, Kim J, Qasem SA, Zhao W, Tan J, El-Amin IB, Dice DD, Marco J, Green J, Xu T, Skardal A, Holmes JH, Jackson JD, Atala A, Yoo JJ. In Situ Bioprinting of Autologous Skin Cells Accelerates Wound Healing of Extensive Excisional Full-Thickness Wounds. Sci Rep. 2019 Feb 12;9(1):1856. doi: 10.1038/s41598-018-38366-w. PMID: 30755653; PMCID: PMC6372693.
- Jorgensen AM, Varkey M, Gorkun A, Clouse C, Xu L, Chou Z, Murphy SV, Molnar J, Lee SJ, Yoo JJ, Soker S, Atala A. Bioprinted Skin Recapitulates Normal Collagen Remodeling in Full-Thickness Wounds. Tissue Eng Part A. 2020 May;26(9-10):512-526. doi: 10.1089/ten.TEA.2019.0319. Epub 2020 Jan 28. PMID: 31861970; PMCID: PMC7249461.
- Heimbach DM, Warden GD, Luterman A, Jordan MH, Ozobia N, Ryan CM, Voigt DW, Hickerson WL, Saffle JR, DeClement FA, Sheridan RL, Dimick AR. Multicenter postapproval clinical trial of Integra dermal regeneration template for burn treatment. J Burn Care Rehabil. 2003 Jan-Feb;24(1):42-8. doi: 10.1097/00004630-200301000-00009. PMID: 12543990.
- Pham C, Greenwood J, Cleland H, Woodruff P, Maddern G. Bioengineered skin substitutes for the management of burns: a systematic review. Burns. 2007 Dec;33(8):946-57. doi: 10.1016/j.burns.2007.03.020. Epub 2007 Sep 7. PMID: 17825993.
- Dantzer E, Braye FM. Reconstructive surgery using an artificial dermis (Integra): results with 39 grafts. Br J Plast Surg. 2001 Dec;54(8):659-64. doi: 10.1054/bjps.2001.3684. PMID: 11728107.
- Badylak SF. The extracellular matrix as a scaffold for tissue reconstruction. Semin Cell Dev Biol. 2002 Oct;13(5):377-83. doi: 10.1016/s1084952102000940. PMID: 12324220.
- Jorgensen AM, Chou Z, Gillispie G, Lee SJ, Yoo JJ, Soker S, Atala A. Decellularized Skin Extracellular Matrix (dsECM) Improves the Physical and Biological Properties of Fibrinogen Hydrogel for Skin Bioprinting Applications. Nanomaterials (Basel). 2020 Jul 29;10(8):1484. doi: 10.3390/nano10081484. PMID: 32751101; PMCID: PMC7466410.
- Jorgensen AM, Yoo JJ, Atala A. Solid Organ Bioprinting: Strategies to Achieve Organ Function. Chem Rev. 2020 Oct 14;120(19):11093-11127. doi: 10.1021/acs.chemrev.0c00145. Epub 2020 Sep 4. PMID: 32885956; PMCID: PMC8459198.
- Brown B, Lindberg K, Reing J, Stolz DB, Badylak SF. The basement membrane component of biologic scaffolds derived from extracellular matrix. Tissue Eng. 2006 Mar;12(3):519-26. doi: 10.1089/ten.2006.12.519. PMID: 16579685.
- Sadtler K, Sommerfeld SD, Wolf MT, Wang X, Majumdar S, Chung L, Kelkar DS, Pandey A, Elisseeff JH. Proteomic composition and immunomodulatory properties of urinary bladder matrix scaffolds in homeostasis and injury. Semin Immunol. 2017 Feb;29:14-23. doi: 10.1016/j.smim.2017.05.002. Epub 2017 Jun 2. PMID: 28583764; PMCID: PMC8509637.
- Riganti JM, Ciotola F, Amenabar A, Craiem D, Graf S, Badaloni A, Gilbert TW, Nieponice A. Urinary bladder matrix scaffolds strengthen esophageal hiatus repair. J Surg Res. 2016 Aug;204(2):344-350. doi: 10.1016/j.jss.2016.04.053. Epub 2016 May 3. PMID: 27565070.
- Young DA, McGilvray KC, Ehrhart N, Gilbert TW. Comparison of in vivo remodeling of urinary bladder matrix and acellular dermal matrix in an ovine model. Regen Med. 2018 Oct;13(7):759-773. doi: 10.2217/rme-2018-0091. Epub 2018 Aug 31. PMID: 30182807.
- Alvarez OM, Smith T, Gilbert TW, Onumah NJ, Wendelken ME, Parker R, Markowitz L. Diabetic Foot Ulcers Treated With Porcine Urinary Bladder Extracellular Matrix and Total Contact Cast: Interim Analysis of a Randomized, Controlled Trial. Wounds. 2017 May;29(5):140-146. Epub 2017 Feb 27. PMID: 28267677.
- Kim JS, Kaminsky AJ, Summitt JB, Thayer WP. New Innovations for Deep Partial-Thickness Burn Treatment with ACell MatriStem Matrix. Adv Wound Care (New Rochelle). 2016 Dec 1;5(12):546-552. doi: 10.1089/wound.2015.0681. PMID: 28078188; PMCID: PMC5165666.
- Martinson M, Martinson N. A comparative analysis of skin substitutes used in the management of diabetic foot ulcers. J Wound Care. 2016 Oct 1;25(Sup10):S8-S17. doi: 10.12968/jowc.2016.25.Sup10.S8. PMID: 27681811.
- Urmacher C. Histology of normal skin. Am J Surg Pathol. 1990 Jul;14(7):671-86. doi: 10.1097/00000478-199007000-00008. PMID: 1694059.
- Murphy SV, Skardal A, Nelson RA Jr, Sunnon K, Reid T, Clouse C, Kock ND, Jackson J, Soker S, Atala A. Amnion membrane hydrogel and amnion membrane powder accelerate wound healing in a full thickness porcine skin wound model. Stem Cells Transl Med. 2020 Jan;9(1):80-92. doi: 10.1002/sctm.19-0101. Epub 2019 Jul 21. Erratum in: Stem Cells Transl Med. 2024 Aug 10:szae046. doi: 10.1093/stcltm/szae046. PMID: 31328435; PMCID: PMC6954699.
- Branski LK, Mittermayr R, Herndon DN, Norbury WB, Masters OE, Hofmann M, Traber DL, Redl H, Jeschke MG. A porcine model of full-thickness burn, excision and skin autografting. Burns. 2008 Dec;34(8):1119-27. doi: 10.1016/j.burns.2008.03.013. Epub 2008 Jul 10. PMID: 18617332; PMCID: PMC2637517.
- Blackstone BN, Kim JY, McFarland KL, Sen CK, Supp DM, Bailey JK, Powell HM. Scar formation following excisional and burn injuries in a red Duroc pig model. Wound Repair Regen. 2017 Aug;25(4):618-631. doi: 10.1111/wrr.12562. Epub 2017 Jul 31. PMID: 28727221; PMCID: PMC5690826.
- Branski LK, Mittermayr R, Herndon DN, Norbury WB, Masters OE, Hofmann M, Traber DL, Redl H, Jeschke MG. A porcine model of full-thickness burn, excision and skin autografting. Burns. 2008 Dec;34(8):1119-27. doi: 10.1016/j.burns.2008.03.013. Epub 2008 Jul 10. PMID: 18617332; PMCID: PMC2637517.
- Midwood KS, Williams LV, Schwarzbauer JE. Tissue repair and the dynamics of the extracellular matrix. Int J Biochem Cell Biol. 2004 Jun;36(6):1031-7. doi: 10.1016/j.biocel.2003.12.003. PMID: 15094118.
- Xue M, Jackson CJ. Extracellular Matrix Reorganization During Wound Healing and Its Impact on Abnormal Scarring. Adv Wound Care (New Rochelle). 2015 Mar 1;4(3):119-136. doi: 10.1089/wound.2013.0485. PMID: 25785236; PMCID: PMC4352699.
- Aarabi S, Bhatt KA, Shi Y, Paterno J, Chang EI, Loh SA, Holmes JW, Longaker MT, Yee H, Gurtner GC. Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis. FASEB J. 2007 Oct;21(12):3250-61. doi: 10.1096/fj.07-8218com. Epub 2007 May 15. Erratum in: FASEB J. 2011 Oct;25(10):3751. PMID: 17504973.
- Reilly GC, Engler AJ. Intrinsic extracellular matrix properties regulate stem cell differentiation. J Biomech. 2010 Jan 5;43(1):55-62. doi: 10.1016/j.jbiomech.2009.09.009. Epub 2009 Oct 2. PMID: 19800626..
- Fayzullin A, Ignatieva N, Zakharkina O, Tokarev M, Mudryak D, Khristidis Y, Balyasin M, Kurkov A, Churbanov S, Dyuzheva T, Timashev P. Modeling of old scars: histopathological, biochemical and thermal analysis of the scar tissue maturation. Biology. 2021 Feb 9;10(2):136 Reilly GC, Engler AJ. Intrinsic extracellular matrix properties regulate stem cell differentiation. J Biomech. 2010 Jan 5;43(1):55-62. doi: 10.1016/j.jbiomech.2009.09.009. Epub 2009 Oct 2. PMID: 19800626..
- Santoso CN, Widyantara KA, Kencana NB, Setyajati FD, Setiawati A. A comprehensive analysis of collagen fiber dynamics in wound healing. Indonesian Journal of Pharmacy. 2024.
- Molnar JA, Lew WK, Rapp DA, Gordon ES, Voignier D, Rushing S, Willner W. Use of standardized, quantitative digital photography in a multicenter Web-based study. Eplasty. 2009;9:e4. Epub 2009 Jan 12. PMID: 19212431; PMCID: PMC2627310.