Covid-19 Research

Research Article

OCLC Number/Unique Identifier:

Beware with the Quality of Thermodynamic Data Diagnostic Check of Phase Transitions Energetics of Active Pharmaceutical Ingredients

General Science    Start Submission

Sergey P Verevkin*, Kseniya V Zherikova, Sergey V Vostrikov and Irina I Kaygorodova

Volume5-Issue9
Dates: Received: 2024-08-13 | Accepted: 2024-08-30 | Published: 2024-09-20
Pages: 1187-1199

Abstract

Thermodynamics is crucial for optimizing drug synthesis, developing pharmaceutical formulations and ensuring their stability, effectiveness and safety. The thermochemical properties of active pharmaceutical ingredients with the common biphenyl motif (RS-Flurbiprofen, Diflunisal, Fenbufen and Biprofen) available in the literature were collected, combined with our own complementary experimental results and evaluated. The vapour pressures temperature dependence of RS-Flurbiprofen was measured using the Knudsen effusion method, and the enthalpy of sublimation was obtained from this measurement. The enthalpy of fusion of RS-Flurbiprofen was measured using DSC. A reliable diagnostic method has been outlined to evaluate the quality of the available experimental thermodynamic data of drugs. The data previously available in the literature for RS-flurbiprofen, diflunisal and fenbufen were analysed and diagnosed as "thick". For RS-flurbiprofen, diflunisal, fenbufen and biprofen, the consistent sets of thermodynamic data were evaluated and recommended for the calculations of the pharmaceutic processes. The "paper-and-pencil" concept presented in this paper can be extended to the diagnosis of "sick" or "healthy" experimental thermodynamic data for pharmaceuticals with a structure other than profens.

FullText HTML FullText PDF DOI: 10.37871/jbres2007


Certificate of Publication




Copyright

© 2024 Verevkin SP, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Verevkin SP, Zherikova KV, Vostrikov SV, Kaygorodova II. Beware with the Quality of Thermodynamic Data: Diagnostic Check of Phase Transitions Energetics of Active Pharmaceutical Ingredients. J Biomed Res Environ Sci. 2024 Sept 20; 5(9): 1187-1199. doi: 10.37871/jbres2007, Article ID: JBRES2007, Available at: https://www.jelsciences.com/articles/jbres2007.pdf


Subject area(s)

References


  1. Malak W, Haslam AJ, Jackson G, Galindo A. Phase behaviour and pH-solubility profile prediction of aqueous buffered solutions of ibuprofen and ketoprofen, Fluid Phase Equil. 2022;560:113504. doi: 10.1016/j.fluid.2022.113504.
  2. Dohrn S, Luebbert C, Lehmkemper K, Kyeremateng SO, Degenhardt M, Sadowski G. Solvent mixtures in pharmaceutical development: Maximizing the API solubility and avoiding phase separation, Fluid Phase Equil. 548 (2021) 113200. doi: 10.1016/j.fluid.2021.113200.
  3. Li K, Gbabode G, Barrio M, Tamarit JL, Vergé-Depré M, Robert B, Rietveld IB. The phase relationship between the pyrazinamide polymorphs α and γ. Int J Pharm. 2020 Apr 30;580:119230. doi: 10.1016/j.ijpharm.2020.119230. Epub 2020 Mar 19. PMID: 32199962.
  4. Bauer M, Lacoulonche F, Céolin R, Barrio M, Khichane I, Robert B, Tamarit JL, Rietveld IB. On the dimorphism of prednisolone: The topological pressure-temperature phase diagram involving forms I and II. Int J Pharm. 2022 Aug 25;624:122047. doi: 10.1016/j.ijpharm.2022.122047. Epub 2022 Jul 25. PMID: 35902055.
  5. Kurkov SV, Perlovich GL. Thermodynamic studies of Fenbufen, Diflunisal, and Flurbiprofen: sublimation, solution and solvation of biphenyl substituted drugs. Int J Pharm. 2008 Jun 5;357(1-2):100-7. doi: 10.1016/j.ijpharm.2008.01.059. Epub 2008 Feb 9. PMID: 18343061.
  6. Umnahanant P, Hasty D, Chickos J. An examination of the thermodynamics of fusion, vaporization, and sublimation of (R,S)- and (R)-flurbiprofen by correlation gas chromatography. J Pharm Sci. 2012 Jun;101(6):2045-54. doi: 10.1002/jps.23094. Epub 2012 Mar 12. PMID: 22411450.
  7. Advanced Chemistry Development (ACD/Labs) Software V11.02 (© 1994-2024 ACD/Labs).
  8. Joback KG, Reid RC. Estimation of pure-component properties from group-contributions. Chem Eng Commun. 1987;57:233-243. doi: 10.1080/00986448708960487.
  9. Perlovich GL, Kurkov SV, Bauer-Brandl A. Thermodynamics of solutions II. Flurbiprofen and diflunisal as models for studying solvation of drug substances. Eur J Pharm Sci. 2003;19:423-432. doi: 10.1016/S0928-0987(03)00145-3.
  10. Verevkin SP, Zaitsau DH, Schick C, Heym F. Development of direct and indirect methods for the determination of vaporization enthalpies of extremely low-volatile compounds. Handbook of Therm Anal & Calorim. 2018;6:1-46. doi: 10.1016/B978-0-444-64062-8.00015-2.
  11. Walden P. Über die schmelzwärme, spezifische kohäsion und molekulargrösse bei der schmelztemperatur. Z Elektrochem Angew Phys Chem. 1908;14:713-728. doi: 10.1002/bbpc.19080144302.
  12. Abdelaziz A, Zaitsau DH, Kuratieva N, Verevkin SP, Schick C. Melting of nucleobases. Getting the cutting edge of “Walden’s Rule”. Phys Chem Chem Phys. 2019;21:12787-12797. doi: 10.1039/c9cp00716d.
  13. Zherikova KV, Verevkin SP. Error or exemption to the rule? Development of a diagnostic check for thermochemistry of metal- Organic compounds. RSC Adv. 2020;10:38158-38173. doi: 10.1039/D0RA06880B.
  14. Lacoulonche F, Chauvet A, Masse J. An investigation of flurbiprofen polymorphism by thermoanalytical and spectroscopic methods and a study of its interactions with poly-(ethylene glycol) 6000 by differential scanning calorimetry and modelling. Int J Pharm. 1997;153:167-179. doi: 10.1016/S0378-5173(97)00102-6.
  15. Henck JO, Kuhnert-Brandstätter M. Demonstration of the terms enantiotropy and monotropy in polymorphism research exemplified by flurbiprofen. J Pharm Sci. 1999 Jan;88(1):103-8. doi: 10.1021/js9801945. PMID: 9874709.
  16. Perlovich GL, Hansen LK, Bauer-Brandl A. Solvates with anomalous low melting points: preparation, structural and thermochemical aspects. J Therm Anal Calorim. 2003;73:715-725.
  17. Vippagunta SR, Wang Z, Hornung S, Krill SL. Factors affecting the formation of eutectic solid dispersions and their dissolution behavior. J Pharm Sci. 2007 Feb;96(2):294-304. doi: 10.1002/jps.20754. PMID: 17051588.
  18. Grzesiak AL, Matzger AJ. New form discovery for the analgesics flurbiprofen and sulindac facilitated by polymer-induced heteronucleation. J Pharm Sci. 2007 Nov;96(11):2978-86. doi: 10.1002/jps.20954. PMID: 17567888; PMCID: PMC2581769.
  19. Gashi Z, Censi R, Malaj L, Gobetto R, Mozzicafreddo M, Angeletti M, Masic A, Di Martino P. Differences in the interaction between aryl propionic acid derivatives and poly(vinylpyrrolidone) K30: A multi-methodological approach. J Pharm Sci. 2009 Nov;98(11):4216-28. doi: 10.1002/jps.21734. PMID: 19645003.
  20. Baird JA, Van Eerdenbrugh B, Taylor LS. A classification system to assess the crystallization tendency of organic molecules from undercooled melts. J Pharm Sci. 2010 Sep;99(9):3787-806. doi: 10.1002/jps.22197. PMID: 20623696.
  21. Tian B, Feng Y, Li X, Yang J, Ding Z, Huang X, Yin Q, Xie C, Hao H. Solution thermodynamic properties of flurbiprofen in twelve solvents from 283.15 to 323.15 K. J Mol Liq. 2019;296:111744. doi: 10.1016/j.molliq.2019.111744.
  22. MMartínez-Ohárriz MC, Martín C, Goñi MM, Rodríguez-Espinosa C, Tros de Ilarduya-Apaolaza MC, Sánchez M. Polymorphism of diflunisal: isolation and solid-state characteristics of a new crystal form. J Pharm Sci. 1994 Feb;83(2):174-7. doi: 10.1002/jps.2600830212. PMID: 8169784.
  23. Perlovich GL, Hansen LK, Bauer-Brandl A. Interrelation between thermochemical and structural data of polymorphs exemplified by diflunisal. J Pharm Sci. 2002 Apr;91(4):1036-45. doi: 10.1002/jps.10043. PMID: 11948542.
  24. Surov AO, Voronin AP, Manin AN, Manin NG, Kuzmina LG, Churakov AV, Perlovich GL. Pharmaceutical cocrystals of diflunisal and diclofenac with theophylline. Mol Pharm. 2014 Oct 6;11(10):3707-15. doi: 10.1021/mp5004652. Epub 2014 Sep 11. PMID: 25184906.
  25. Évora AOL, Castro RAE, Maria TMR, Silva MR, ter Horst JH, Canotilho J, Eusébio MES. Co-Crystals of diflunisal and isomeric pyridinecarboxamides - A thermodynamics and crystal engineering contribution. Cryst Eng Comm. 2016;18:4749-4759. doi: 10.1039/C6CE00380J.
  26. Wassvik CM, Holmén AG, Bergström CA, Zamora I, Artursson P. Contribution of solid-state properties to the aqueous solubility of drugs. Eur J Pharm Sci. 2006 Nov;29(3-4):294-305. doi: 10.1016/j.ejps.2006.05.013. Epub 2006 Jun 7. PMID: 16949802.
  27. Cong Y, Du C, Xing K, Bian Y, Li X, Wang M. Investigation on co-solvency, solvent effect, hansen solubility parameter and preferential solvation of fenbufen dissolution and models correlation. J Mol Liq. 2022;348:118415. doi: 10.1016/j.molliq.2021.118415.
  28. Gobble C, Chickos J, Verevkin SP. Vapor pressures and vaporization enthalpies of a series of dialkyl phthalates by correlation gas chromatography. J Chem Eng Data. 2014;59:1353-1365. doi: 10.1021/je500110d.
  29. Acree WE, Chickos JS. Phase transition enthalpy measurements of organic and organometallic compounds. Sublimation, vaporization and fusion enthalpies from 1880 to 2015. Part 1. C1 - C10. J Phys Chem Ref Data. 2016;45:33101. doi: 10.1063/1.4948363.
  30. Kulikov D, Verevkin SP, Heintz A. Determination of vapor pressures and vaporization enthalpies of the aliphatic branched c5 and c6 alcohols. J Chem Eng Data. 2001;46:1593-1600. doi: 10.1021/je010187p.
  31. Chickos JS, Hosseini S, Hesse DG. Determination of vaporization enthalpies of simple organic molecules by correlations of change in gas chromatographic net retention times. Thermochim Acta. 1995;249:41-62. doi: 10.1016/0040-6031(95)90670-3.
  32. Verevkin SP. Vapour pressures and enthalpies of vaporization of a series of the linear n-alkyl-benzenes. J Chem Thermodyn. 2006;38:1111-1123. doi: 10.1016/j.jct.2005.11.009.
  33. Sharp ME. A rapid screening procedure for acidic and neutral drugs in blood by high resolution gas chromatography. J Anal Toxicol. 1987 Jan-Feb;11(1):8-11. doi: 10.1093/jat/11.1.8. PMID: 3821079.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search