Covid-19 Research

Research Article

OCLC Number/Unique Identifier:

Green Synthesis of Silver Nanoparticles Using Origanum onites Extract: Effect of Temperature and Time on Antioxidant and Antimicrobial Activity

Medicine Group    Start Submission

Sema Yiyit Dogan, Secil Kaya and Ebru Kondolot Solak*

Volume5-Issue9
Dates: Received: 2024-08-14 | Accepted: 2024-09-26 | Published: 2024-09-27
Pages: 1214-1228

Abstract

Origanum species are known to be powerful antioxidants due to the secondary metabolites they contain. It is therefore hypothesized that nanoparticles synthesized by origanum species may have applications in medicine, cosmetics, and food production. This study aimed to investigate the antioxidant and antimicrobial activities of silver nanoparticles obtained at different times (60, 120, and 180 min) and temperatures (30, 60 and 90°C) using O. onites extract. The initial synthesis of Ag Nanoparticles (AgNps) was characterized by UV- spectrophotometry and the surface plasmon resonance band was observed at 430-450 nm under all conditions. The highest absorbance was observed at a wavelength of 425 nm for 180 min at 90°C. The FTIR spectrum showed a peak in the 3.000-3.500 cm-1 range compared to the control, confirming the reduction of silver nitrate. When the particle distribution of AgNPs prepared at three different reaction times was examined by SEM, it was observed that AgNPs with very similar particle sizes were formed. The average particle size was determined to be 171 nm, 169 nm, and 152 nm, respectively, for reaction times of 60, 120, and 180 minutes at 90°C, based on the results of the EDX analysis. The highest DPPH scavenging activity was observed in nanoparticles obtained at the third hour of the 60°C and 90°C reactions. AgNPs obtained at all 3 temperatures showed antimicrobial activity on S. aureus, E. coli, and C. albicans, however, the highest activity was found in AgNPs synthesized at 60°C and 90°C at the 3rd hour. Nanoparticles synthesized from natural materials should not display toxic properties. The AgNPs produced in this study did not exhibit toxicity towards healthy human fibroblasts. The results demonstrated that the AgNPs synthesized within the scope of this study have potential applications in biomedical fields. It was determined that the AgNPs with the highest activity were synthesized at temperatures of 60°C and 90°C at the 3rd hour.

FullText HTML FullText PDF DOI: 10.37871/jbres2009


Certificate of Publication




Copyright

© 2024 Doğan SY, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Doğan SY, Kaya S, Solak EK. Green Synthesis of Silver Nanoparticles Using Origanum onites Extract: Effect of Temperature and Time on Antioxidant and Antimicrobial Activity. J Biomed Res Environ Sci. 2024 Sept 27; 5(9): 1214-1228. doi: 10.37871/jbres2009, Article ID: JBRES2009, Available at: https://www.jelsciences.com/articles/jbres2009.pdf


Subject area(s)

References


  1. Choudhry A, Sharma A, Siddiqui SI, Ahamad I, Sajid M, Khan TA, Chaudhry SA. Origanum vulgare manganese ferrite nanocomposite: An advanced multifunctional hybrid material for dye remediation. Environ Res. 2023 Mar 1;220:115193. doi: 10.1016/j.envres.2022.115193. Epub 2022 Dec 29. PMID: 36587717.
  2. Al-Sheddi ES, Alsohaibani N, Rshoud N, Al-Oqail MM, Al-Massarani SM, Farshori NN, Malik T, Al-Khedhairy AA, Siddiqui MA. Anticancer efficacy of green synthesized silver nanoparticles from Artemisia monosperma against human breast cancer cells. S Afr J Bot. 2023;160:123-131. doi: 10.1016/j.sajb.2023.07.001.
  3. Yontar AK, Çevik S. Effects of plant extracts and green-synthesized silver nanoparticles on the Polyvinyl Alcohol (PVA) nanocomposite films. Arab J Sci Eng. 2023;48:12043-12060. doi: 10.1007/s13369-023-07643-w.
  4. Menichetti A, Mavridi-Printezi A, Mordini D, Montalti M. Effect of Size, Shape and Surface Functionalization on the Antibacterial Activity of Silver Nanoparticles. J Funct Biomater. 2023 Apr 26;14(5):244. doi: 10.3390/jfb14050244. PMID: 37233354; PMCID: PMC10219039.
  5. Nie P, Zhao Y, Xu H. Synthesis, applications, toxicity and toxicity mechanisms of silver nanoparticles: A review. Ecotoxicol Environ Saf. 2023 Mar 15;253:114636. doi: 10.1016/j.ecoenv.2023.114636. Epub 2023 Feb 15. PMID: 36806822.
  6. Singh S, Maurya IC, Tiwari A, Srivastava P, Bahadur L. Green synthesis of TiO2 nanoparticles using Citrus limon juice extract as a bio-capping agent for enhanced performance of dye-sensitized solar cells. Surf Interfaces. 2022;28:101652. doi: 10.1016/j.surfin.2021.101652.
  7. Li X, Li B, Liu R, Dong Y, Zhao Y, Wu Y. Development of pH-responsive nanocomposites with remarkably synergistic antibiofilm activities based on ultrasmall silver nanoparticles in combination with aminoglycoside antibiotics. Colloids Surf B Biointerfaces. 2021 Dec;208:112112. doi: 10.1016/j.colsurfb.2021.112112. Epub 2021 Sep 14. PMID: 34600361.
  8. Ghosh A, De SK, Mondal S, Halder A, Barai M, Guchhait KC, Raul P, Karmakar S, Ghosh C, Patra A, Panda AK, Senapati D, Sur UK. Green synthesis of silver nanoparticles and its applications as sensor, catalyst, and antibacterial agent. Materials Today: Proceedings. 2023. doi: 10.1016/j.matpr.2023.03.159.
  9. Kaur N, Singh A, Ahmad W. Microwave assisted green synthesis of silver nanoparticles and its application: A review. J Inorg Organomet Polym Mater. 2023;33(3):663-672. doi: 10.1007/s10904-022-02470-2.
  10. Mahmood RI, Kadhim AA, Ibraheem S, Albukhaty S, Mohammed-Salih HS, Abbas RH, Jabir MS, Mohammed MKA, Nayef UM, AlMalki FA, Sulaiman GM, Al-Karagoly H. Biosynthesis of copper oxide nanoparticles mediated Annona muricata as cytotoxic and apoptosis inducer factor in breast cancer cell lines. Sci Rep. 2022;12:16165. doi: 10.1038/s41598-022-20360-y.
  11. Susanna D, Balakrishnan RM, Ettiyappan JP. Ultrasonication-assisted green synthesis and characterization of gold nanoparticles from Nothapodytes foetida: An assessment of their antioxidant, antibacterial, anticancer and wound healing potential. J Drug Deliv Sci Technol. 2023;87:104740. doi: 10.1016/j.jddst.2023.104740.
  12. Gutiérrez-Del-Río I, López-Ibáñez S, Magadán-Corpas P, Fernández-Calleja L, Pérez-Valero Á, Tuñón-Granda M, Miguélez EM, Villar CJ, Lombó F. Terpenoids and Polyphenols as Natural Antioxidant Agents in Food Preservation. Antioxidants (Basel). 2021 Aug 8;10(8):1264. doi: 10.3390/antiox10081264. PMID: 34439512; PMCID: PMC8389302.
  13. Gardea-Torresdey JL, Gomez E, Peralta-Videa JR, Parsons JG, Troiani H. and Yacaman MJ. Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir. 2003;19(4):1357-1361. doi: 10.1021/la020835i.
  14. Rajeshkumar S, Bharath LV. Mechanism of plant-mediated synthesis of silver nanoparticles - A review on biomolecules involved, characterisation and antibacterial activity. Chem Biol Interact. 2017 Aug 1;273:219-227. doi: 10.1016/j.cbi.2017.06.019. Epub 2017 Jun 21. PMID: 28647323.
  15. Vidyasagar Patel RR, Singh SK, Singh M. Green synthesis of silver nanoparticles: methods, biological applications, delivery and toxicity. Mater Adv. 2023;4(8):1831-1849. doi: 10.1039/d2ma01105k.
  16. Sharma NK, Vishwakarma J, Rai S, Alomar TS, AlMasoud N, Bhattarai A. Green Route Synthesis and Characterization Techniques of Silver Nanoparticles and Their Biological Adeptness. ACS Omega. 2022 Jul 25;7(31):27004-27020. doi: 10.1021/acsomega.2c01400. PMID: 35967040; PMCID: PMC9366950.
  17. Chakraborty B, Bhat MP, Basavarajappa DS, Rudrappa M, Nayaka S, Kumar RS, Almansour AI, Perumal K. Biosynthesis and characterization of polysaccharide-capped silver nanoparticles from Acalypha indica L. and evaluation of their biological activities. Environ Res. 2023 May 15;225:115614. doi: 10.1016/j.envres.2023.115614. Epub 2023 Mar 6. PMID: 36889569.
  18. Hassan RM. Kinetics of reduction of Se (IV) by vitamin C with green synthesis of cluster-grapes nanoparticles: A Mechanistic approach on electron-transfer of nanoparticle growth rates. J Mol Struct. 2022;1250:131575. doi: 10.1016/j.molstruc.2021.131575.
  19. Deshmukh SP, Patil SM, Mullani SB, Delekar SD. Silver nanoparticles as an effective disinfectant: A review. Mater Sci Eng C Mater Biol Appl. 2019;97:954-965. doi: 10.1016/j.msec.2018.12.102.
  20. Ganesh Kumar A, Pugazhenthi E, Sankarganesh P, Muthusamy C, Rajasekaran M, Lokesh E, Khusro A, Kavya G. Cleome rutidosperma leaf extract mediated biosynthesis of silver nanoparticles and anti-candidal, anti-biofilm, anti-cancer, and molecular docking analysis. Biomass Convers Bioref. 2023;1-13. doi: 10.1007/s13399-023-03806-9.
  21. De Matteis V, Rizzello L, Ingrosso C, Liatsi-Douvitsa E, De Giorgi ML, De Matteis G, Rinaldi R. Cultivar-Dependent Anticancer and Antibacterial Properties of Silver Nanoparticles Synthesized Using Leaves of Different Olea Europaea Trees. Nanomaterials (Basel). 2019 Oct 30;9(11):1544. doi: 10.3390/nano9111544. PMID: 31671618; PMCID: PMC6915347.
  22. Remya RR., Julius A, Suman TY, Aranganathan L, Dhas TS, Mohanavel V, Muhibbullah M. Biofabrication of silver nanoparticles and current research of its environmental applications. Journal of Nanomaterials. 2022;1-11. doi: 10.1155/2022/2670429.
  23. Ietswaart JH. A taxonomic revision of the genus Origanum (Labiatae). Leiden Botanical Series, Netherlands: Leiden University Press. 1980;4(1):1-153.
  24. Canli K, Bozyel ME, Turu D, Benek A, Simsek O, Altuner EM. Biochemical, Antioxidant Properties and Antimicrobial Activity of Steno-Endemic Origanum onites. Microorganisms. 2023 Aug 2;11(8):1987. doi: 10.3390/microorganisms11081987. PMID: 37630547; PMCID: PMC10457892.
  25. Sargın SA, Akçicek E, Selvi S. An ethnobotanical study of medicinal plants used by the local people of Alaşehir (Manisa) in Turkey. J Ethnopharmacol. 2013 Dec 12;150(3):860-74. doi: 10.1016/j.jep.2013.09.040. Epub 2013 Oct 11. PMID: 24126062.
  26. Tepe B, Cakir A, Sihoglu Tepe A. Medicinal Uses, Phytochemistry, and Pharmacology of Origanum onites (L.): A Review. Chem Biodivers. 2016 May;13(5):504-20. doi: 10.1002/cbdv.201500069. PMID: 27062715.
  27. Kotronia M, Kavetsou E, Loupassaki S, Kikionis S, Vouyiouka S, Detsi A. Encapsulation of Oregano (Origanum onites L.) Essential Oil in β-Cyclodextrin (β-CD): Synthesis and Characterization of the Inclusion Complexes. Bioengineering (Basel). 2017 Sep 9;4(3):74. doi: 10.3390/bioengineering4030074. PMID: 28952553; PMCID: PMC5615320.
  28. Salayová A, Bedlovičová Z, Daneu N, Baláž M, Lukáčová Bujňáková Z, Balážová Ľ, Tkáčiková Ľ. Green Synthesis of Silver Nanoparticles with Antibacterial Activity Using Various Medicinal Plant Extracts: Morphology and Antibacterial Efficacy. Nanomaterials (Basel). 2021 Apr 14;11(4):1005. doi: 10.3390/nano11041005. PMID: 33919801; PMCID: PMC8070782.
  29. Gecer EN. Synthesis and characterization of silver nanoparticles using Origanum onites leaves: Cytotoxic, apoptotic, and necrotic effects on Capan-1, L929, and Caco-2 cell lines. Green Process Synth. 2023;12(1):20228126. doi: 10.1515/gps-2022-8126.
  30. Shaik MR, Khan M, Kuniyil M, Al-Warthan A, Alkhathlan HZ, Siddiqui MRH, Adil SF. Plant-extract-assisted green synthesis of silver nanoparticles using Origanum vulgare L. extract and their microbicidal activities. Sustainability. 2018;10(4):913. doi: 10.3390/su10040913.
  31. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature. 1958;181:1199-1200. doi: 10.1038/1811199a0.
  32. Doğan YS, Atasagun S, Ergönül MB. Determination of chemical content of Lemna minor L. by GC-MS and investigation of antioxidant activity. Commun Fac Sci Univ Ank Series C. 2022;31(1):53-64. doi: 10.53447/communc.1122558.
  33. Kotan R, Cakir A, Ozer H, Kordali S, Cakmakci R, Dadasoglu F, Kazaz C. Antibacterial effects of Origanum onites against phytopathogenic bacteria: Possible use of the extracts from protection of disease caused by some phytopathogenic bacteria. Sci Hortic. 2014;172:210-220. doi: 10.1016/j.scienta.2014.03.016.
  34. Tasdemir D, Kaiser M, Demirci B, Demirci F, Baser KHC. Antiprotozoal Activity of Turkish Origanum onites Essential Oil and Its Components. Molecules. 2019 Dec 3;24(23):4421. doi: 10.3390/molecules24234421. PMID: 31817023; PMCID: PMC6930659.
  35. Kondolot Solak E, Er A. pH-sensitive interpenetrating polymer network microspheres of poly(vinyl alcohol) and carboxymethyl cellulose for controlled release of the nonsteroidal anti-inflammatory drug ketorolac tromethamine. Artif Cells Nanomed Biotechnol. 2016 May;44(3):817-24. doi: 10.3109/21691401.2014.982805. Epub 2015 Jan 24. PMID: 25619756.
  36. Sharifi-Rad M, Berkay Yılmaz Y, Antika G, Salehi B, Tumer TB, Kulandaisamy Venil C, Das G, Patra JK, Karazhan N, Akram M, Iqbal M, Imran M, Sen S, Acharya K, Dey A, Sharifi-Rad J. Phytochemical constituents, biological activities, and health-promoting effects of the genus Origanum. Phytother Res. 2021 Jan;35(1):95-121. doi: 10.1002/ptr.6785. Epub 2020 Aug 12. PMID: 32789910.
  37. Erenler R, Dag B. Biosynthesis of silver nanoparticles using Origanum majorana L. and evaluation of their antioxidant activity. Inorg Nano-Met. 2021;52(4):485-492. doi: 10.1080/24701556.2021.1952263.
  38. Gutierrez-Gines MJ, Alizadeh H, Alderton E, Ambrose V, Meister A, Robinson BH, Horswell J. Phytoremediation of microbial contamination in soil by New Zealand native plants. App Soil Ecol. 2021;167:104040. doi: 10.1016/j.apsoil.2021.104040.
  39. Jang J, Hur HG, Sadowsky MJ, Byappanahalli MN, Yan T, Ishii S. Environmental Escherichia coli: ecology and public health implications-a review. J Appl Microbiol. 2017 Sep;123(3):570-581. doi: 10.1111/jam.13468. Epub 2017 Jul 3. PMID: 28383815.
  40. Kondolot Solak E, Kaya S, Asman G. Preparation, characterization, and antibacterial properties of biocompatible material for wound healing. J Macromol Sci A. 2021;58:10:709-716. doi: 10.1080/10601325.2021.1929315
  41. Taylor TA, Unakal CG. Staphylococcus aureus Infection. In: StatPearls. StatPearls Publishing, Treasure Island (FL) PMID: 28722898. 2023.
  42. Lopes JP, Lionakis MS. Pathogenesis and virulence of Candida albicans. Virulence. 2022 Dec;13(1):89-121. doi: 10.1080/21505594.2021.2019950. PMID: 34964702; PMCID: PMC9728475.
  43. Gulati M, Nobile CJ. Candida albicans biofilms: development, regulation, and molecular mechanisms. Microbes Infect. 2016 May;18(5):310-21. doi: 10.1016/j.micinf.2016.01.002. Epub 2016 Jan 22. PMID: 26806384; PMCID: PMC4860025.
  44. Hermanns R, Cremers NAJ, Leeming JP, van der Werf ET. Sweet Relief: Determining the Antimicrobial Activity of Medical Grade Honey Against Vaginal Isolates of Candida albicans. J Fungi (Basel). 2019 Sep 9;5(3):85. doi: 10.3390/jof5030085. PMID: 31505796; PMCID: PMC6787731.
  45. Nourbakhsh F, Lotfalizadeh M, Badpeyma M, Shakeri A, Soheili V. From plants to antimicrobials: Natural products against bacterial membranes. Phytother Res. 2022 Jan;36(1):33-52. doi: 10.1002/ptr.7275. Epub 2021 Sep 16. PMID: 34532918.
  46. WHO. Antimicrobial resistance. 2023.
  47. Altintas A, Tabanca N, Tyihák E, Ott PG, Móricz AM, Mincsovics E, Wedge DE. Characterization of volatile constituents from Origanum onites and their antifungal and antibacterial activity. J AOAC Int. 2013 Nov-Dec;96(6):1200-8. doi: 10.5740/jaoacint.sgealtintas. PMID: 24645494.
  48. Kaskatepe B, Yildiz SS, Kiymaci ME, Yazgan AN, Cesur S, Erdem SA. Chemical composition and antimicrobial activity of the commercial Origanum onites L. oil against nosocomial carbapenem resistant extended spectrum beta lactamase producer Escherichia coli isolates. Acta Biol Hung. 2017 Dec;68(4):466-476. doi: 10.1556/018.68.2017.4.11. PMID: 29262709.
  49. Rai MK, Deshmukh SD, Ingle AP, Gade AK. Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. J Appl Microbiol. 2012 May;112(5):841-52. doi: 10.1111/j.1365-2672.2012.05253.x. Epub 2012 Mar 28. PMID: 22324439.
  50. Sankar R, Karthik A, Prabu A, Karthik S, Shivashangari KS, Ravikumar V. Origanum vulgare mediated biosynthesis of silver nanoparticles for its antibacterial and anticancer activity. Colloids Surf B Biointerfaces. 2013 Aug 1;108:80-4. doi: 10.1016/j.colsurfb.2013.02.033. Epub 2013 Mar 4. PMID: 23537829.
  51. Benedec D, Oniga I, Cuibus F, Sevastre B, Stiufiuc G, Duma M, Hanganu D, Iacovita C, Stiufiuc R, Lucaciu CM. Origanum vulgare mediated green synthesis of biocompatible gold nanoparticles simultaneously possessing plasmonic, antioxidant and antimicrobial properties. Int J Nanomedicine. 2018 Feb 20;13:1041-1058. doi: 10.2147/IJN.S149819. PMID: 29503540; PMCID: PMC5824763.
  52. Hambardzumyan S, Sahakyan N, Petrosyan M, Nasim MJ, Jacob C, Trchounian A. Origanum vulgare L. extract-mediated synthesis of silver nanoparticles, their characterization and antibacterial activities. AMB Express. 2020 Sep 5;10(1):162. doi: 10.1186/s13568-020-01100-9. PMID: 32889670; PMCID: PMC7474311.
  53. Netchareonsirisuk P, Puthong S, Dubas S, Palaga T, Komolpis K. Effect of capping agents on the cytotoxicity of silver nanoparticles in human normal and cancer skin cell lines. J Nanopart Res. 2016;18:322. doi: 10.1007/s11051-016-3624-6.
  54. Xu L, Wang YY, Huang J, Chen CY, Wang ZX, Xie H. Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics. 2020;10(20):8996-9031. doi: 10.7150/thno.45413.
  55. Ahmed MJ, Murtaza G, Rashid F, Iqbal J. Eco-friendly green synthesis of silver nanoparticles and their potential applications as antioxidant and anticancer agents. Drug Dev Ind Pharm. 2019 Oct;45(10):1682-1694. doi: 10.1080/03639045.2019.1656224. Epub 2019 Sep 2. PMID: 31407925.
  56. Khorrami S, Zarrabi A, Khaleghi M, Danaei M, Mozafari MR. Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. Int J Nanomedicine. 2018 Nov 27;13:8013-8024. doi: 10.2147/IJN.S189295. PMID: 30568442; PMCID: PMC6267361.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search