Covid-19 Research

Mini Review

OCLC Number/Unique Identifier:

Can Ketamine Treat Schizophrenia?

Medicine Group    Start Submission

Fikret Sahin*

Volume6-Issue3
Dates: Received: 2025-02-14 | Accepted: 2025-03-14 | Published: 2025-03-15
Pages: 231-246

Abstract

NMDAR antagonists, such as memantine and ketamine, have demonstrated efficacy in treating neurodegenerative diseases and major depression. Our recent findings reveal that these antagonists significantly enhance 20S proteasome activity, which is essential for degrading intrinsically disordered, oxidatively damaged, or misfolded proteins-key factors in neurodegenerative diseases like Alzheimer's and Parkinson's. Through the Ubiquitin-Independent 20S Proteasome pathway (UIPS), these drugs help maintain cellular protein homeostasis, a critical function that declines with age and contributes to protein aggregation and disease symptoms. Our findings provide a plausible explanation for how memantine alleviates symptoms of Alzheimer's and Parkinson's diseases by reducing or preventing protein aggregation in the brain. Furthermore, our data suggest that the dramatic changes in synaptic protein homeostasis induced by ketamine within 2 hours may contribute to its therapeutic effects in major depression.

The etiology and mechanisms of schizophrenia are not well understood, arising from complex interactions between genetic and environmental factors. Its pathophysiology reflects this complexity, with abnormalities in multiple brain functions. This review discusses the potential effects of NMDAR antagonists on the pathophysiology of schizophrenia and their therapeutic impact, supported by our data.

FullText HTML FullText PDF DOI: 10.37871/jbres2078


Certificate of Publication




Copyright

© 2025 Sahin F. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Sahin F. Can Ketamine Treat Schizophrenia?. J Biomed Res Environ Sci. 2025 Mar 15; 6(3): 231- 246. doi: 10.37871/jbres2078, Article ID: JBRES2078, Available at: https://www.jelsciences.com/articles/jbres2078.pdf


Subject area(s)

References


  1. Chang HJ, Lane HY, Tsai GE. NMDA pathology and treatment of schizophrenia. Curr Pharm Des. 2014;20(32):5118-26. doi: 10.2174/1381612819666140110121908. PMID: 24410561.
  2. Lai WS, Chang CY, Wong WR, Pei JC, Chen YS, Hung WL. Assessing schizophrenia-relevant cognitive and social deficits in mice: a selection of mouse behavioral tasks and potential therapeutic compounds. Curr Pharm Des. 2014;20(32):5139-50. doi: 10.2174/1381612819666140110122750. PMID: 24410559.
  3. Lin CH, Huang YJ, Lin CJ, Lane HY, Tsai GE. NMDA neurotransmission dysfunction in mild cognitive impairment and Alzheimer's disease. Curr Pharm Des. 2014;20(32):5169-79. doi: 10.2174/1381612819666140110115603. PMID: 24410566.
  4. Panizzutti R, Scoriels L, Avellar M. The co-agonist site of NMDA-glutamate receptors: a novel therapeutic target for age-related cognitive decline. Curr Pharm Des. 2014;20(32):5160-8. doi: 10.2174/1381612819666140110121139. PMID: 24410562.
  5. Schmitt A, Falkai P, Papiol S. Neurodevelopmental disturbances in schizophrenia: evidence from genetic and environmental factors. J Neural Transm (Vienna). 2023 Mar;130(3):195-205. doi: 10.1007/s00702-022-02567-5. Epub 2022 Nov 12. PMID: 36370183; PMCID: PMC9660136.
  6. Schmitt A, Malchow B, Hasan A, Falkai P. The impact of environmental factors in severe psychiatric disorders. Front Neurosci. 2014 Feb 11;8:19. doi: 10.3389/fnins.2014.00019. PMID: 24574956; PMCID: PMC3920481.
  7. Gilmour G, Dix S, Fellini L, Gastambide F, Plath N, Steckler T, Talpos J, Tricklebank M. NMDA receptors, cognition and schizophrenia--testing the validity of the NMDA receptor hypofunction hypothesis. Neuropharmacology. 2012 Mar;62(3):1401-12. doi: 10.1016/j.neuropharm.2011.03.015. Epub 2011 Mar 21. PMID: 21420987.
  8. Reiner A, Levitz J. Glutamatergic Signaling in the Central Nervous System: Ionotropic and Metabotropic Receptors in Concert. Neuron. 2018 Jun 27;98(6):1080-1098. doi: 10.1016/j.neuron.2018.05.018. PMID: 29953871; PMCID: PMC6484838.
  9. Frohlich J, Van Horn JD. Reviewing the ketamine model for schizophrenia. J Psychopharmacol. 2014 Apr;28(4):287-302. doi: 10.1177/0269881113512909. Epub 2013 Nov 20. PMID: 24257811; PMCID: PMC4133098.
  10. Beck K, Hindley G, Borgan F, Ginestet C, McCutcheon R, Brugger S, Driesen N, Ranganathan M, D'Souza DC, Taylor M, Krystal JH, Howes OD. Association of Ketamine With Psychiatric Symptoms and Implications for Its Therapeutic Use and for Understanding Schizophrenia: A Systematic Review and Meta-analysis. JAMA Netw Open. 2020 May 1;3(5):e204693. doi: 10.1001/jamanetworkopen.2020.4693. PMID: 32437573; PMCID: PMC7243091.
  11. Moghaddam B, Javitt D. From revolution to evolution: the glutamate hypothesis of schizophrenia and its implication for treatment. Neuropsychopharmacology. 2012 Jan;37(1):4-15. doi: 10.1038/npp.2011.181. Epub 2011 Sep 28. PMID: 21956446; PMCID: PMC3238069.
  12. Zhang T, Liu C, Zhong N, Wang Y, Huang Y, Zhang X. Advances in the Treatment of Cognitive Impairment in Schizophrenia: Targeting NMDA Receptor Pathways. Int J Mol Sci. 2024 Oct 3;25(19):10668. doi: 10.3390/ijms251910668. PMID: 39408997; PMCID: PMC11477438.
  13. Hu W, MacDonald ML, Elswick DE, Sweet RA. The glutamate hypothesis of schizophrenia: evidence from human brain tissue studies. Ann N Y Acad Sci. 2015 Mar;1338(1):38-57. doi: 10.1111/nyas.12547. Epub 2014 Oct 14. PMID: 25315318; PMCID: PMC4363164.
  14. Balu DT, Basu AC, Corradi JP, Cacace AM, Coyle JT. The NMDA receptor co-agonists, D-serine and glycine, regulate neuronal dendritic architecture in the somatosensory cortex. Neurobiol Dis. 2012 Feb;45(2):671-82. doi: 10.1016/j.nbd.2011.10.006. Epub 2011 Oct 17. PMID: 22024716; PMCID: PMC3259183.
  15. Forrest MP, Parnell E, Penzes P. Dendritic structural plasticity and neuropsychiatric disease. Nat Rev Neurosci. 2018 Mar 16;19(4):215-234. doi: 10.1038/nrn.2018.16. PMID: 29545546; PMCID: PMC6442683.
  16. Puhl MD, Mintzopoulos D, Jensen JE, Gillis TE, Konopaske GT, Kaufman MJ, Coyle JT. In vivo magnetic resonance studies reveal neuroanatomical and neurochemical abnormalities in the serine racemase knockout mouse model of schizophrenia. Neurobiol Dis. 2015 Jan;73:269-74. doi: 10.1016/j.nbd.2014.10.009. Epub 2014 Oct 23. PMID: 25461193; PMCID: PMC4408217.
  17. Balu DT. The NMDA Receptor and Schizophrenia: From Pathophysiology to Treatment. Adv Pharmacol. 2016;76:351-82. doi: 10.1016/bs.apha.2016.01.006. Epub 2016 Mar 4. PMID: 27288082; PMCID: PMC5518924.
  18. Okubo R, Okada M, Motomura E. Dysfunction of the NMDA Receptor in the Pathophysiology of Schizophrenia and/or the Pathomechanisms of Treatment-Resistant Schizophrenia. Biomolecules. 2024 Sep 6;14(9):1128. doi: 10.3390/biom14091128. PMID: 39334894; PMCID: PMC11430065.
  19. Boks MP, Rietkerk T, van de Beek MH, Sommer IE, de Koning TJ, Kahn RS. Reviewing the role of the genes G72 and DAAO in glutamate neurotransmission in schizophrenia. Eur Neuropsychopharmacol. 2007 Sep;17(9):567-72. doi: 10.1016/j.euroneuro.2006.12.003. Epub 2007 Jan 23. PMID: 17250995.
  20. Sahin F, Gunel A, Atasoy BT, Guler U, Salih B, Kuzu I, Taspinar M, Cinar O, Kahveci S. Enhancing proteasome activity by NMDAR antagonists explains their therapeutic effect in neurodegenerative and mental diseases. Sci Rep. 2025 Jan 13;15(1):1165. doi: 10.1038/s41598-024-84479-w. PMID: 39805913; PMCID: PMC11729902.
  21. Sanghai N, Tranmer GK. Biochemical and Molecular Pathways in Neurodegenerative Diseases: An Integrated View. Cells. 2023 Sep 20;12(18):2318. doi: 10.3390/cells12182318. PMID: 37759540; PMCID: PMC10527779.
  22. Ciurea AV, Mohan AG, Covache-Busuioc RA, Costin HP, Glavan LA, Corlatescu AD, Saceleanu VM. Unraveling Molecular and Genetic Insights into Neurodegenerative Diseases: Advances in Understanding Alzheimer's, Parkinson's, and Huntington's Diseases and Amyotrophic Lateral Sclerosis. Int J Mol Sci. 2023 Jun 28;24(13):10809. doi: 10.3390/ijms241310809. PMID: 37445986; PMCID: PMC10341997.
  23. Tampi RR, van Dyck CH. Memantine: efficacy and safety in mild-to-severe Alzheimer's disease. Neuropsychiatr Dis Treat. 2007 Apr;3(2):245-58. doi: 10.2147/nedt.2007.3.2.245. PMID: 19300557; PMCID: PMC2654628.
  24. Krystal JH, Kavalali ET, Monteggia LM. Ketamine and rapid antidepressant action: new treatments and novel synaptic signaling mechanisms. Neuropsychopharmacology. 2024 Jan;49(1):41-50. doi: 10.1038/s41386-023-01629-w. Epub 2023 Jul 24. PMID: 37488280; PMCID: PMC10700627.
  25. Moraes BJ, Coelho P, Fão L, Ferreira IL, Rego AC. Modified Glutamatergic Postsynapse in Neurodegenerative Disorders. Neuroscience. 2021 Feb 1;454:116-139. doi: 10.1016/j.neuroscience.2019.12.002. Epub 2019 Dec 27. PMID: 31887357.
  26. Ryan TJ, Grant SG. The origin and evolution of synapses. Nat Rev Neurosci. 2009 Oct;10(10):701-12. doi: 10.1038/nrn2717. Epub 2009 Sep 9. Erratum in: Nat Rev Neurosci. 2009 Nov;10(11):829. PMID: 19738623.
  27. Tu CH, MacDonald I, Chen YH. The Effects of Acupuncture on Glutamatergic Neurotransmission in Depression, Anxiety, Schizophrenia, and Alzheimer's Disease: A Review of the Literature. Front Psychiatry. 2019 Feb 12;10:14. doi: 10.3389/fpsyt.2019.00014. PMID: 30809158; PMCID: PMC6379324.
  28. Reiner A, Levitz J. Glutamatergic Signaling in the Central Nervous System: Ionotropic and Metabotropic Receptors in Concert. Neuron. 2018 Jun 27;98(6):1080-1098. doi: 10.1016/j.neuron.2018.05.018. PMID: 29953871; PMCID: PMC6484838.
  29. Chang PK, Verbich D, McKinney RA. AMPA receptors as drug targets in neurological disease--advantages, caveats, and future outlook. Eur J Neurosci. 2012 Jun;35(12):1908-16. doi: 10.1111/j.1460-9568.2012.08165.x. PMID: 22708602.
  30. Borsellino P, Krider RI, Chea D, Grinnell R, Vida TA. Ketamine and the Disinhibition Hypothesis: Neurotrophic Factor-Mediated Treatment of Depression. Pharmaceuticals (Basel). 2023 May 12;16(5):742. doi: 10.3390/ph16050742. PMID: 37242525; PMCID: PMC10221455.
  31. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017 Jan 4;45(D1):D353-D361. doi: 10.1093/nar/gkw1092. Epub 2016 Nov 28. PMID: 27899662; PMCID: PMC5210567.
  32. English JA, Fan Y, Föcking M, Lopez LM, Hryniewiecka M, Wynne K, Dicker P, Matigian N, Cagney G, Mackay-Sim A, Cotter DR. Reduced protein synthesis in schizophrenia patient-derived olfactory cells. Transl Psychiatry. 2015 Oct 20;5(10):e663. doi: 10.1038/tp.2015.119. PMID: 26485547; PMCID: PMC4930119.
  33. Sabaie H, Gharesouran J, Asadi MR, Farhang S, Ahangar NK, Brand S, Arsang-Jang S, Dastar S, Taheri M, Rezazadeh M. Downregulation of miR-185 is a common pathogenic event in 22q11.2 deletion syndrome-related and idiopathic schizophrenia. Metab Brain Dis. 2022 Apr;37(4):1175-1184. doi: 10.1007/s11011-022-00918-5. Epub 2022 Jan 25. PMID: 35075501.
  34. Ikenouchi J, Umeda M. FRMD4A regulates epithelial polarity by connecting Arf6 activation with the PAR complex. Proc Natl Acad Sci U S A. 2010 Jan 12;107(2):748-53. doi: 10.1073/pnas.0908423107. Epub 2009 Dec 22. PMID: 20080746; PMCID: PMC2818900.
  35. Accogli A, Eric Jarvis G, Schiavetto A, Lai L, Amirali EL, Jimenez Cruz DA, Rivière JB, Trakadis Y. Psychiatric features and variable neurodevelopment outcome in four females with IQSEC2 spectrum disorder. J Genet. 2020;99:47. PMID: 32529990.
  36. Park SJ, Jeong J, Park YU, Park KS, Lee H, Lee N, Kim SM, Kuroda K, Nguyen MD, Kaibuchi K, Park SK. Disrupted-in-schizophrenia-1 (DISC1) Regulates Endoplasmic Reticulum Calcium Dynamics. Sci Rep. 2015 Mar 3;5:8694. doi: 10.1038/srep08694. PMID: 25732993; PMCID: PMC4346799.
  37. Hashimoto R, Ohi K, Okada T, Yasuda Y, Yamamori H, Hori H, Hikita T, Taya S, Saitoh O, Kosuga A, Tatsumi M, Kamijima K, Kaibuchi K, Takeda M, Kunugi H. Association analysis between schizophrenia and the AP-3 complex genes. Neurosci Res. 2009 Sep;65(1):113-5. doi: 10.1016/j.neures.2009.05.008. Epub 2009 May 27. PMID: 19481122.
  38. Gardiner EJ, Cairns MJ, Liu B, Beveridge NJ, Carr V, Kelly B, Scott RJ, Tooney PA. Gene expression analysis reveals schizophrenia-associated dysregulation of immune pathways in peripheral blood mononuclear cells. J Psychiatr Res. 2013 Apr;47(4):425-37. doi: 10.1016/j.jpsychires.2012.11.007. Epub 2012 Dec 4. PMID: 23218666; PMCID: PMC7094548.
  39. Andrade A, Brennecke A, Mallat S, Brown J, Gomez-Rivadeneira J, Czepiel N, Londrigan L. Genetic Associations between Voltage-Gated Calcium Channels and Psychiatric Disorders. Int J Mol Sci. 2019 Jul 19;20(14):3537. doi: 10.3390/ijms20143537. PMID: 31331039; PMCID: PMC6679227.
  40. Chen Y, Gu Y, Wang B, Wei A, Dong N, Jiang Y, Liu X, Zhu L, Zhu F, Tan T, Jing Z, Mao F, Zhang Y, Yao J, Yang Y, Wang H, Wu H, Li H, Zheng C, Duan X, Huo J, Wu X, Hu S, Zhao A, Li Z, Cheng X, Qin Y, Song Q, Zhan S, Qu Q, Guan F, Xu H, Kang X, Wang C. Synaptotagmin-11 deficiency mediates schizophrenia-like behaviors in mice via dopamine over-transmission. Nat Commun. 2024 Dec 4;15(1):10571. doi: 10.1038/s41467-024-54604-4. PMID: 39632880; PMCID: PMC11618495.
  41. Vieira N, Rito T, Correia-Neves M, Sousa N. Sorting Out Sorting Nexins Functions in the Nervous System in Health and Disease. Mol Neurobiol. 2021 Aug;58(8):4070-4106. doi: 10.1007/s12035-021-02388-9. Epub 2021 May 1. PMID: 33931804; PMCID: PMC8280035.
  42. Bruce HA, Kochunov P, Paciga SA, Hyde CL, Chen X, Xie Z, Zhang B, Xi HS, O'Donnell P, Whelan C, Schubert CR, Bellon A, Ament SA, Shukla DK, Du X, Rowland LM, O'Neill H, Hong LE. Potassium channel gene associations with joint processing speed and white matter impairments in schizophrenia. Genes Brain Behav. 2017 Jun;16(5):515-521. doi: 10.1111/gbb.12372. Epub 2017 Mar 13. PMID: 28188958; PMCID: PMC5457349.
  43. Hawi Z, Tong J, Dark C, Yates H, Johnson B, Bellgrove MA. The role of cadherin genes in five major psychiatric disorders: A literature update. Am J Med Genet B Neuropsychiatr Genet. 2018 Mar;177(2):168-180. doi: 10.1002/ajmg.b.32592. Epub 2017 Sep 18. PMID: 28921840.
  44. Andrews JL, Zalesky A, Nair S, Sullivan RP, Green MJ, Pantelis C, Newell KA, Fernandez F. Genetic and Epigenetic Regulation in Lingo-1: Effects on Cognitive Function and White Matter Microstructure in a Case-Control Study for Schizophrenia. Int J Mol Sci. 2023 Oct 26;24(21):15624. doi: 10.3390/ijms242115624. PMID: 37958608; PMCID: PMC10648795.
  45. McCutcheon RA, Krystal JH, Howes OD. Dopamine and glutamate in schizophrenia: biology, symptoms and treatment. World Psychiatry. 2020 Feb;19(1):15-33. doi: 10.1002/wps.20693. PMID: 31922684; PMCID: PMC6953551.
  46. Kruse AO, Bustillo JR. Glutamatergic dysfunction in Schizophrenia. Transl Psychiatry. 2022 Dec 3;12(1):500. doi: 10.1038/s41398-022-02253-w. PMID: 36463316; PMCID: PMC9719533.
  47. Li W, Su X, Chen T, Li Z, Yang Y, Zhang L, Liu Q, Shao M, Zhang Y, Ding M, Lu Y, Yu H, Fan X, Song M, Lv L. Solute Carrier Family 1 (SLC1A1) Contributes to Susceptibility and Psychopathology Symptoms of Schizophrenia in the Han Chinese Population. Front Psychiatry. 2020 Sep 23;11:559210. doi: 10.3389/fpsyt.2020.559210. PMID: 33173509; PMCID: PMC7538510.
  48. Wong AH, Trakalo J, Likhodi O, Yusuf M, Macedo A, Azevedo MH, Klempan T, Pato MT, Honer WG, Pato CN, Van Tol HH, Kennedy JL. Association between schizophrenia and the syntaxin 1A gene. Biol Psychiatry. 2004 Jul 1;56(1):24-9. doi: 10.1016/j.biopsych.2004.03.008. PMID: 15219469.
  49. de Jonge JC, Vinkers CH, Hulshoff Pol HE, Marsman A. GABAergic Mechanisms in Schizophrenia: Linking Postmortem and In Vivo Studies. Front Psychiatry. 2017 Aug 11;8:118. doi: 10.3389/fpsyt.2017.00118. PMID: 28848455; PMCID: PMC5554536.
  50. Spellmann I, Rujescu D, Musil R, Mayr A, Giegling I, Genius J, Zill P, Dehning S, Opgen-Rhein M, Cerovecki A, Hartmann AM, Schäfer M, Bondy B, Müller N, Möller HJ, Riedel M. Homer-1 polymorphisms are associated with psychopathology and response to treatment in schizophrenic patients. J Psychiatr Res. 2011 Feb;45(2):234-41. doi: 10.1016/j.jpsychires.2010.06.004. Epub 2010 Jul 3. PMID: 20598711.
  51. Gören JL. Brain-derived neurotrophic factor and schizophrenia. Ment Health Clin. 2016 Nov 3;6(6):285-288. doi: 10.9740/mhc.2016.11.285. PMID: 29955483; PMCID: PMC6007539.
  52. Deane AR, Potemkin N, Ward RD. Mitogen-activated protein kinase (MAPK) signalling corresponds with distinct behavioural profiles in a rat model of maternal immune activation. Behav Brain Res. 2021 Jan 1;396:112876. doi: 10.1016/j.bbr.2020.112876. Epub 2020 Aug 23. PMID: 32846206.
  53. Hoseth EZ, Krull F, Dieset I, Mørch RH, Hope S, Gardsjord ES, Steen NE, Melle I, Brattbakk HR, Steen VM, Aukrust P, Djurovic S, Andreassen OA, Ueland T. Exploring the Wnt signaling pathway in schizophrenia and bipolar disorder. Transl Psychiatry. 2018 Mar 6;8(1):55. doi: 10.1038/s41398-018-0102-1. PMID: 29507296; PMCID: PMC5838215.
  54. Casas BS, Vitória G, Prieto CP, Casas M, Chacón C, Uhrig M, Ezquer F, Ezquer M, Rehen SK, Palma V. Schizophrenia-derived hiPSC brain microvascular endothelial-like cells show impairments in angiogenesis and blood-brain barrier function. Mol Psychiatry. 2022 Sep;27(9):3708-3718. doi: 10.1038/s41380-022-01653-0. Epub 2022 Jun 15. PMID: 35705634.
  55. Mätlik K, Garton DR, Montaño-Rodríguez AR, Olfat S, Eren F, Casserly L, Damdimopoulos A, Panhelainen A, Porokuokka LL, Kopra JJ, Turconi G, Schweizer N, Bereczki E, Piehl F, Engberg G, Cervenka S, Piepponen TP, Zhang FP, Sipilä P, Jakobsson J, Sellgren CM, Erhardt S, Andressoo JO. Elevated endogenous GDNF induces altered dopamine signalling in mice and correlates with clinical severity in schizophrenia. Mol Psychiatry. 2022 Aug;27(8):3247-3261. doi: 10.1038/s41380-022-01554-2. Epub 2022 May 26. PMID: 35618883; PMCID: PMC9708553.
  56. Hoseth EZ, Krull F, Dieset I, Mørch RH, Hope S, Gardsjord ES, Steen NE, Melle I, Brattbakk HR, Steen VM, Aukrust P, Djurovic S, Andreassen OA, Ueland T. Attenuated Notch signaling in schizophrenia and bipolar disorder. Sci Rep. 2018 Mar 28;8(1):5349. doi: 10.1038/s41598-018-23703-w. PMID: 29593239; PMCID: PMC5871764.
  57. Chen Y, Guan W, Wang ML, Lin XY. PI3K-AKT/mTOR Signaling in Psychiatric Disorders: A Valuable Target to Stimulate or Suppress? Int J Neuropsychopharmacol. 2024 Feb 1;27(2):pyae010. doi: 10.1093/ijnp/pyae010. PMID: 38365306; PMCID: PMC10888523.
  58. Hill K, Mann L, Laws KR, Stephenson CM, Nimmo-Smith I, McKenna PJ. Hypofrontality in schizophrenia: a meta-analysis of functional imaging studies. Acta Psychiatr Scand. 2004 Oct;110(4):243-56. doi: 10.1111/j.1600-0447.2004.00376.x. PMID: 15352925.
  59. Mula M, Schmitz B. Depression in epilepsy: mechanisms and therapeutic approach. Ther Adv Neurol Disord. 2009 Sep;2(5):337-44. doi: 10.1177/1756285609337340. PMID: 21180624; PMCID: PMC3002598.
  60. Komatsu H, Onoguchi G, Silverstein SM, Jerotic S, Sakuma A, Kanahara N, Kakuto Y, Ono T, Yabana T, Nakazawa T, Tomita H. Retina as a potential biomarker in schizophrenia spectrum disorders: a systematic review and meta-analysis of optical coherence tomography and electroretinography. Mol Psychiatry. 2024 Feb;29(2):464-482. doi: 10.1038/s41380-023-02340-4. Epub 2023 Dec 11. PMID: 38081943; PMCID: PMC11116118.
  61. Asor E, Ben-Shachar D. Platelets: A possible glance into brain biological processes in schizophrenia. World J Psychiatry. 2012 Dec 22;2(6):124-33. doi: 10.5498/wjp.v2.i6.124. PMID: 24175178; PMCID: PMC3782191.
  62. Ling E, Nemesh J, Goldman M, Kamitaki N, Reed N, Handsaker RE, Genovese G, Vogelgsang JS, Gerges S, Kashin S, Ghosh S, Esposito JM, Morris K, Meyer D, Lutservitz A, Mullally CD, Wysoker A, Spina L, Neumann A, Hogan M, Ichihara K, Berretta S, McCarroll SA. A concerted neuron-astrocyte program declines in ageing and schizophrenia. Nature. 2024 Mar;627(8004):604-611. doi: 10.1038/s41586-024-07109-5. Epub 2024 Mar 6. PMID: 38448582; PMCID: PMC10954558.
  63. Oh YM, Lee SW, Kim WK, Chen S, Church VA, Cates K, Li T, Zhang B, Dolle RE, Dahiya S, Pak SC, Silverman GA, Perlmutter DH, Yoo AS. Age-related Huntington's disease progression modeled in directly reprogrammed patient-derived striatal neurons highlights impaired autophagy. Nat Neurosci. 2022 Nov;25(11):1420-1433. doi: 10.1038/s41593-022-01185-4. Epub 2022 Oct 27. PMID: 36303071; PMCID: PMC10162007.
  64. Labrie V, Fukumura R, Rastogi A, Fick LJ, Wang W, Boutros PC, Kennedy JL, Semeralul MO, Lee FH, Baker GB, Belsham DD, Barger SW, Gondo Y, Wong AH, Roder JC. Serine racemase is associated with schizophrenia susceptibility in humans and in a mouse model. Hum Mol Genet. 2009 Sep 1;18(17):3227-43. doi: 10.1093/hmg/ddp261. Epub 2009 May 30. PMID: 19483194; PMCID: PMC2722985.
  65. Lin H, Jacobi AA, Anderson SA, Lynch DR. D-Serine and Serine Racemase Are Associated with PSD-95 and Glutamatergic Synapse Stability. Front Cell Neurosci. 2016 Feb 25;10:34. doi: 10.3389/fncel.2016.00034. PMID: 26941605; PMCID: PMC4766304.
  66. Kang HJ, Wilkins AD, Lichtarge O, Wensel TG. Determinants of endogenous ligand specificity divergence among metabotropic glutamate receptors. J Biol Chem. 2015 Jan 30;290(5):2870-8. doi: 10.1074/jbc.M114.622233. Epub 2014 Dec 17. PMID: 25519912; PMCID: PMC4317032.
  67. Goltsov AY, Loseva JG, Andreeva TV, Grigorenko AP, Abramova LI, Kaleda VG, Orlova VA, Moliaka YK, Rogaev EI. Polymorphism in the 5'-promoter region of serine racemase gene in schizophrenia. Mol Psychiatry. 2006 Apr;11(4):325-6. doi: 10.1038/sj.mp.4001801. PMID: 16446740.
  68. Minichino A, Senior M, Brondino N, Zhang SH, Godwlewska BR, Burnet PWJ, Cipriani A, Lennox BR. Measuring Disturbance of the Endocannabinoid System in Psychosis: A Systematic Review and Meta-analysis. JAMA Psychiatry. 2019 Sep 1;76(9):914-923. doi: 10.1001/jamapsychiatry.2019.0970. Erratum in: JAMA Psychiatry. 2021 Jan 1;78(1):112. doi: 10.1001/jamapsychiatry.2020.3882. PMID: 31166595; PMCID: PMC6552109.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search