Qinghang Zhao, Huidong Zhao, Zhengxuan Hu, Zhiheng Ren, Liujun Chen, Zhenggang Chen, Rongtao Yuan and Qingyuan Guo*
Volume6-Issue3
Dates: Received: 2024-12-15 | Accepted: 2025-03-18 | Published: 2025-03-24
Pages: 282-292
Abstract
Orthodontic tooth movement is considered as a biological response to the orthodontic stretch via the osteoblast and osteoclast processes. Orthodontic stretch leads to strain in the periodontal ligament, circulatory disturbances, and vascular changes of the periodontal tissue, which cause a hypoxic environment in local tissue. However, bone remodeling is not only induced by mechanical stress but also effected by hypoxic environment which regulated by numerous factors. Thus, we established a rat model of orthodontic tooth movement to investigate the expression and function of HIF-1α and VEGF in rat periodontal ligament under orthodontic stretch. The results showed that osteogenesis and vascular changes occurred in the tension site of alveolar bone during orthodontic tooth movement. Additionally, there were significant changes in the expression of HIF-1a and VEGF proteins under orthodontic force. Compared with control group, experimental group expressed significantly more HIF-1α and VEGF protein on the surface of the alveolar bone tension side during the rat tooth movement (p < 0.05). These data showed that the hypoxic environment could be induced by mechanical force. HIF-1a and VEGF may play an important role in maintaining the physiologic equilibrium of periodontal tissue reconstruction during orthodontic tooth movement.
FullText HTML
FullText PDF
DOI: 10.37871/jbres2082
Certificate of Publication

Copyright
© 2025 Zhao Q, et al. Distributed under Creative Commons CC-BY 4.0
How to cite this article
Zhao Q, Zhao H, Hu Z, Ren Z, Chen L, Chen Z, Yuan R, Guo Q. Expression and Function of Hypoxia Inducible Factor-1 and Vascular Endothelial Growth Factor in Rat Periodontal ligament under O r thodontic Stretch. J Biomed Res Environ Sci. 2025 Mar 24; 6(3): 282-292. doi: 10.37871/jbres2082, Article ID: JBRES2082, Available at: https://www.jelsciences.com/articles/jbres2082.pdf
Subject area(s)
References
- Nanda R, Upadhyay M. Skeletal and dental considerations in orthodontic treatment mechanics: a contemporary view. Eur J Orthod. 2013 Oct;35(5):634-43. doi: 10.1093/ejo/cjs054. Epub 2012 Sep 5. PMID: 24068287.
- Wu Y, Zhang P, Dai Q, Fu R, Yang X, Fang B, Jiang L. Osteoclastogenesis accompanying early osteoblastic differentiation of BMSCs promoted by mechanical stretch. Biomed Rep. 2013 May;1(3):474-478. doi: 10.3892/br.2013.84. Epub 2013 Mar 20. PMID: 24648971; PMCID: PMC3917496.
- Patil AK, Shetty AS, Setty S, Thakur S. Understanding the advances in biology of orthodontic tooth movement for improved ortho-perio interdisciplinary approach. J Indian Soc Periodontol. 2013 May;17(3):309-18. doi: 10.4103/0972-124X.115648. PMID: 24049330; PMCID: PMC3768180.
- Niklas A, Proff P, Gosau M, Römer P. The role of hypoxia in orthodontic tooth movement. Int J Dent. 2013;2013:841840. doi: 10.1155/2013/841840. Epub 2013 Oct 21. PMID: 24228034; PMCID: PMC3818850.
- Kaelin WG Jr, Ratcliffe PJ. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell. 2008 May 23;30(4):393-402. doi: 10.1016/j.molcel.2008.04.009. PMID: 18498744.
- Nakada Y, Canseco DC, Thet S, Abdisalaam S, Asaithamby A, Santos CX, Shah AM, Zhang H, Faber JE, Kinter MT, Szweda LI, Xing C, Hu Z, Deberardinis RJ, Schiattarella G, Hill JA, Oz O, Lu Z, Zhang CC, Kimura W, Sadek HA. Hypoxia induces heart regeneration in adult mice. Nature. 2017 Jan 12;541(7636):222-227. doi: 10.1038/nature20173. Epub 2016 Oct 31. PMID: 27798600.
- Semenza GL. Oxygen sensing, homeostasis, and disease. N Engl J Med. 2011 Aug 11;365(6):537-47. doi: 10.1056/NEJMra1011165. Erratum in: N Engl J Med. 2011 Sep 8;365(10):968. PMID: 21830968.
- Krishnan V, Davidovitch Z. On a path to unfolding the biological mechanisms of orthodontic tooth movement. J Dent Res. 2009 Jul;88(7):597-608. doi: 10.1177/0022034509338914. PMID: 19641146.
- Stiers PJ, van Gastel N, Carmeliet G. Targeting the hypoxic response in bone tissue engineering: A balance between supply and consumption to improve bone regeneration. Mol Cell Endocrinol. 2016 Sep 5;432:96-105. doi: 10.1016/j.mce.2015.12.024. Epub 2016 Jan 6. PMID: 26768117.
- Schipani E, Mangiavini L, Merceron C. HIF-1α and growth plate development: what we really know. Bonekey Rep. 2015 Aug 12;4:730. doi: 10.1038/bonekey.2015.99. PMID: 26331009; PMCID: PMC4549921.
- Kaelin WG Jr, Ratcliffe PJ, Semenza GL. Pathways for Oxygen Regulation and Homeostasis: The 2016 Albert Lasker Basic Medical Research Award. JAMA. 2016 Sep 27;316(12):1252-3. doi: 10.1001/jama.2016.12386. PMID: 27622845.
- Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell. 2012 Feb 3;148(3):399-408. doi: 10.1016/j.cell.2012.01.021. PMID: 22304911; PMCID: PMC3437543.
- Song X, Liu S, Qu X, Hu Y, Zhang X, Wang T, Wei F. BMP2 and VEGF promote angiogenesis but retard terminal differentiation of osteoblasts in bone regeneration by up-regulating Id1. Acta Biochim Biophys Sin (Shanghai). 2011 Oct;43(10):796-804. doi: 10.1093/abbs/gmr074. Epub 2011 Aug 30. PMID: 21880603.
- Xue H, Zheng J, Cui Z, Bai X, Li G, Zhang C, He S, Li W, Lajud SA, Duan Y, Zhou H. Low-intensity pulsed ultrasound accelerates tooth movement via activation of the BMP-2 signaling pathway. PLoS One. 2013 Jul 23;8(7):e68926. doi: 10.1371/journal.pone.0068926. PMID: 23894376; PMCID: PMC3720872.
- Akhoundi MS, Sadegh AA, Ghazanfari R, Rezvaneh G, Etemad-Moghadam, S, Shahroo EM, Alaeddini M, Mojgan A, Khorshidian A, Azam K, Rabbani S, Shahram R, Shamshiri AR, Reza SA, Momeni N, Nafiseh M. Effect of supplementary zinc on orthodontic tooth movement in a rat model. Dental Press J Orthod. 2016 Mar-Apr;21(2):45-50. doi: 10.1590/2177-6709.21.2.045-050.oar. Erratum in: Dental Press J Orthod. 2019 Jan-Feb;24(1):109. doi: 10.1590/2177-6709.21.2.045-050.err.. Sadegh AA [corrected to Akhoundi MA], Rezvaneh G [coorected to Ghazanfari R], Shahroo EM [corrected to Etemad-Moghadam S], Mojgan A [corrected to Alaeddini M], Azam K [corrected to Khorshidian A], Shahram R [corrected to Rabbani S], Reza SH [corrected to. PMID: 27275614; PMCID: PMC4896281.
- Kirschneck C, Proff P, Fanghaenel J, Behr M, Wahlmann U, Roemer P. Differentiated analysis of orthodontic tooth movement in rats with an improved rat model and three-dimensional imaging. Ann Anat. 2013 Dec;195(6):539-53. doi: 10.1016/j.aanat.2013.08.003. Epub 2013 Oct 16. PMID: 24183941.
- Ong CK, Walsh LJ, Harbrow D, Taverne AA, Symons AL. Orthodontic tooth movement in the prednisolone-treated rat. Angle Orthod. 2000 Apr;70(2):118-25. doi: 10.1043/0003-3219(2000)070<0118:OTMITP>2.0.CO;2. PMID: 10832999.
- Kohno T, Matsumoto Y, Kanno Z, Warita H, Soma K. Experimental tooth movement under light orthodontic forces: rates of tooth movement and changes of the periodontium. J Orthod. 2002 Jun;29(2):129-35. doi: 10.1093/ortho/29.2.129. PMID: 12114463.
- Shang F, Ming L, Zhou Z, Yu Y, Sun J, Ding Y, Jin Y. The effect of licochalcone A on cell-aggregates ECM secretion and osteogenic differentiation during bone formation in metaphyseal defects in ovariectomized rats. Biomaterials. 2014 Mar;35(9):2789-97. doi: 10.1016/j.biomaterials.2013.12.061. Epub 2014 Jan 15. PMID: 24439395.
- Ren Y, Maltha JC, Kuijpers-Jagtman AM. The rat as a model for orthodontic tooth movement--a critical review and a proposed solution. Eur J Orthod. 2004 Oct;26(5):483-90. doi: 10.1093/ejo/26.5.483. PMID: 15536836.
- Hikida T, Yamaguchi M, Shimizu M, Kikuta J, Yoshino T, Kasai K. Comparisons of orthodontic root resorption under heavy and jiggling reciprocating forces during experimental tooth movement in a rat model. Korean J Orthod. 2016 Jul;46(4):228-41. doi: 10.4041/kjod.2016.46.4.228. Epub 2016 Jul 25. PMID: 27478800; PMCID: PMC4965594.
- Saunders MM, Taylor AF, Du C, Zhou Z, Pellegrini VD Jr, Donahue HJ. Mechanical stimulation effects on functional end effectors in osteoblastic MG-63 cells. J Biomech. 2006;39(8):1419-27. doi: 10.1016/j.jbiomech.2005.04.011. Epub 2005 Jun 13. PMID: 15953606.
- Lohberger B, Kaltenegger H, Stuendl N, Payer M, Rinner B, Leithner A. Effect of cyclic mechanical stimulation on the expression of osteogenesis genes in human intraoral mesenchymal stromal and progenitor cells. Biomed Res Int. 2014;2014:189516. doi: 10.1155/2014/189516. Epub 2014 Apr 7. PMID: 24804200; PMCID: PMC3998000.
- Kitase Y, Yokozeki M, Fujihara S, Izawa T, Kuroda S, Tanimoto K, Moriyama K, Tanaka E. Analysis of gene expression profiles in human periodontal ligament cells under hypoxia: the protective effect of CC chemokine ligand 2 to oxygen shortage. Arch Oral Biol. 2009 Jul;54(7):618-24. doi: 10.1016/j.archoralbio.2009.03.010. Epub 2009 Apr 29. PMID: 19406381.
- Warren SM, Steinbrech DS, Mehrara BJ, Saadeh PB, Greenwald JA, Spector JA, Bouletreau PJ, Longaker MT. Hypoxia regulates osteoblast gene expression. J Surg Res. 2001 Jul;99(1):147-55. doi: 10.1006/jsre.2001.6128. PMID: 11421617.
- Riddle RC, Khatri R, Schipani E, Clemens TL. Role of hypoxia-inducible factor-1alpha in angiogenic-osteogenic coupling. J Mol Med (Berl). 2009 Jun;87(6):583-90. doi: 10.1007/s00109-009-0477-9. Epub 2009 May 5. PMID: 19415227; PMCID: PMC3189695.
- Gordillo GM, Sen CK. Revisiting the essential role of oxygen in wound healing. Am J Surg. 2003 Sep;186(3):259-63. doi: 10.1016/s0002-9610(03)00211-3. PMID: 12946829.
- Tafani M, Sansone L, Limana F, Arcangeli T, De Santis E, Polese M, Fini M, Russo MA. The Interplay of Reactive Oxygen Species, Hypoxia, Inflammation, and Sirtuins in Cancer Initiation and Progression. Oxid Med Cell Longev. 2016;2016:3907147. doi: 10.1155/2016/3907147. Epub 2015 Dec 20. PMID: 26798421; PMCID: PMC4699039.
- Muz B, de la Puente P, Azab F, Azab AK. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckl). 2015 Dec 11;3:83-92. doi: 10.2147/HP.S93413. PMID: 27774485; PMCID: PMC5045092.
- Masoud GN, Li W. HIF-1α pathway: role, regulation and intervention for cancer therapy. Acta Pharm Sin B. 2015 Sep;5(5):378-89. doi: 10.1016/j.apsb.2015.05.007. Epub 2015 Jun 6. PMID: 26579469; PMCID: PMC4629436.
- Semenza GL. Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Annu Rev Pathol. 2014;9:47-71. doi: 10.1146/annurev-pathol-012513-104720. Epub 2013 Aug 7. PMID: 23937437.
- Papandreou I, Powell A, Lim AL, Denko N. Cellular reaction to hypoxia: sensing and responding to an adverse environment. Mutat Res. 2005 Jan 6;569(1-2):87-100. doi: 10.1016/j.mrfmmm.2004.06.054. PMID: 15603754.
- Riddle RC, Leslie JM, Gross TS, Clemens TL. Hypoxia-inducible factor-1α protein negatively regulates load-induced bone formation. J Biol Chem. 2011 Dec 30;286(52):44449-56. doi: 10.1074/jbc.M111.276683. Epub 2011 Nov 12. PMID: 22081627; PMCID: PMC3248005.
- Wang T, Zhang X, Bikle DD. Osteogenic Differentiation of Periosteal Cells During Fracture Healing. J Cell Physiol. 2017 May;232(5):913-921. doi: 10.1002/jcp.25641. Epub 2016 Oct 26. PMID: 27731505; PMCID: PMC5247290.
- Knowles HJ. Hypoxic regulation of osteoclast differentiation and bone resorption activity. Hypoxia (Auckl). 2015 Nov 11;3:73-82. doi: 10.2147/HP.S95960. PMID: 27774484; PMCID: PMC5045091.